155 research outputs found

    Autoimmune/inflammatory syndrome induced by adjuvants: a review

    Get PDF
    The autoimmune/inflammatory syndrome induced by adjuvants (ASIA) includes several autoimmune conditions and phenomena that occur after exposure to substances with adjuvant activity. The spectrum of the disease is heterogeneous with respect to the clinical presentation as well as the severity of the clinical manifestations. Different substances and medical devices with adjuvant activity are currently known, such as vaccines, oils, silicones, mineral salts, lipopolysaccharides, peptidoglycans, among others. These adjuvants are immunological molecules that function through potentiation of antigen-specific immune responses. Thus, the etiopathogenesis of ASIA syndrome involves a multifactorial interaction between environmental factors and genetic predisposition, and secondary activation of the adaptive and innate arms of the immune system through various mechanisms. Although in some reported cases the ASIA syndrome improves considerably when removing the implants, there are no conclusive results for the clinical benefit of removing the implants, so it is necessary to carry out further basic, clinical and surgical investigations in order to determine the best therapeutic decision

    PD-L1+ Regulatory B Cells Are Significantly Decreased in Rheumatoid Arthritis Patients and Increase After Successful Treatment

    Get PDF
    Background: B cells play an important role in the development and maintenance of rheumatoid arthritis (RA). Although IL-10–producing B cells represent a major subset of regulatory B cells (Bregs) able to suppress autoimmune and inflammatory responses, recent reports showed that B cell-mediated immune suppression may also occur independent of IL-10. For instance, B cells can modulate T cell immune responses through the expression of regulatory molecules such as PD-L1. So far, PD-L1-expressing B cells have not been analyzed in RA patients.Objective: To analyze the frequency of PD-L1-expressing B cells in the peripheral blood of RA patients compared to healthy controls (HC) matched for sex and age, their function on T cell response and their changes in response to therapy.Methods: Fresh peripheral blood B cells from RA patients and HC were characterized by flow cytometry and their functionality assessed in a co-culture system with autologous T cells.Results: The frequencies of CD19+PD-L1+ B cells, CD24hiCD38−PD-L1+ and CD24hiCD38hiPD-L1+ B cells were significantly lower in untreated RA patients than in HC. In a follow-up study, the frequencies of PD-L1+ B cells (CD19+PD-L1+ B cells, CD24hiCD38−PD-L1+ and CD24hiCD38hiPD-L1+ B cells) increased significantly after treatment in good responder patients, although the frequency of total CD24hiCD38hi B cells decreased. CD19+ B cells from untreated RA patients and HC upregulated PD-L1 expression similarly upon stimulation with CpG plus IL-2 and were able to suppress, in vitro, CD8+ T cell proliferation and cytokine production in a PD-L1-dependent manner.Conclusions: Our results show that PD-L1+ B cells exhibiting T cell suppressive capacity are significantly decreased in untreated RA patients but increase in response to successful treatment. PD-L1 expression on B cells from RA patients can be modulated in vitro and PD-L1+ B cells could thus provide new perspectives for future treatment strategies

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Prevalence, Distribution, and Impact of Mild Cognitive Impairment in Latin America, China, and India: A 10/66 Population-Based Study

    Get PDF
    A set of cross-sectional surveys carried out in Cuba, Dominican Republic, Peru, Mexico, Venezuela, Puerto Rico, China, and India reveal the prevalence and between-country variation in mild cognitive impairment at a population level

    Complete Genome Sequences of the Novel Cluster BP Phages Infecting Streptomyces sanglieri, AxeJC, Cumberbatch, Eastland, Eklok, HFrancette, Ignacio, Piccadilly, and Vondra

    Get PDF
    Article describes the Streptomyces sanglieri bacteriophages AxeJC, Cumberbatch, Eastland,Eklok, HFrancette, Ignacio, Piccadilly, and Vondra form a novel actinobacteriophage cluster,BP. These siphoviruses have circularly permuted genomes with an average size of 37,700 bp and a GC content of 71%. Each genome contains approximately 58 protein-coding genes, with no tRNAs

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore