551 research outputs found
Characterization of 13 multi-drug resistant Salmonella serovars from different broiler chickens associated with those of human isolates
<p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>are frequently isolated from chickens and their products. Prevalent serogroups and serovars of <it>Salmonella </it>as well as their genotypes and antibiograms were determined for cloacal samples from 1595 chickens. To understand the possible serovar and H antigens for transmission between chicken and human, serovars and their H antigens of 164 chicken and 5314 human isolates were compared.</p> <p>Results</p> <p>Prevalence of <it>Salmonella </it>differed among chicken lines and ages. Chicken and human isolates belonged mainly to serogroup B, C1, C2-C3, D, and E. 13 serovars and 66 serovars were identified for chicken and human isolates respectively. The common serovars for chicken and human isolates were <it>S</it>. Typhimurium, <it>S</it>. Enteritidis, <it>S</it>. Albany, <it>S</it>. Derby, and <it>S</it>. Anatum and shared common H1 antigens "g complex; i; e,h; and z4,z24" and H2 antigens "1 complex and -". In human isolates, H1 antigen "i" and H2 antigen "-" were common in all serogroups. In chicken, antimicrobial susceptibility differed among serogroups, serovars and three counties. All isolates were susceptible to cefazolin and ceftriaxone, but highly resistant to ampicillin, chloramphenicol, flumequine, streptomycin, sulfamethoxazole-trimethoprim, and tetracycline. Except those isolates of serogroup C1 of Chick group and serogroup G, all isolates were multi-drug resistance. Only <it>S</it>. Kubacha, <it>S</it>. Typhimurium, <it>S</it>. Grampian, and <it>S</it>. Mons were resistant to ciprofloxacin and/or enrofloxacin.</p> <p>Conclusion</p> <p>In chicken, prevalent serogroups and serovars were associated with chicken ages, lines and regions; and flouroquinolone-resistant and MDR isolates emerged. H1 antigens "g complex and i" and H2 antigens "1 complex and -" might be important for transmission of <it>Salmonella </it>between chicken and human.</p
Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset
Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset
Temperature-Dependent Pseudogaps in Colossal Magnetoresistive Oxides
Direct electronic structure measurements of a variety of the colossal
magnetoresistive oxides show the presence of a pseudogap at the Fermi energy
E_F which drastically suppresses the electron spectral function at E_F. The
pseudogap is a strong function of the layer number of the samples (sample
dimensionality) and is strongly temperature dependent, with the changes
beginning at the ferromagnetic transition temperature T_c. These trends are
consistent with the major transport trends of the CMR oxides, implying a direct
relationship between the pseudogap and transport, including the "colossal"
conductivity changes which occur across T_c. The k-dependence of the
temperature-dependent effects indicate that the pseudogap observed in these
compounds is not due to the extrinsic effects proposed by Joynt.Comment: 5 pages, 6 figures, submitted to Phys. Rev.
Local fluctuations in quantum critical metals
We show that spatially local, yet low-energy, fluctuations can play an
essential role in the physics of strongly correlated electron systems tuned to
a quantum critical point. A detailed microscopic analysis of the Kondo lattice
model is carried out within an extended dynamical mean-field approach. The
correlation functions for the lattice model are calculated through a
self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled
both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field).
A renormalization-group treatment of this impurity problem--perturbative in
, where is an exponent characterizing the spectrum
of the bosonic bath--shows that competition between the two couplings can drive
the local-moment fluctuations critical. As a result, two distinct types of
quantum critical point emerge in the Kondo lattice, one being of the usual
spin-density-wave type, the other ``locally critical.'' Near the locally
critical point, the dynamical spin susceptibility exhibits scaling
with a fractional exponent. While the spin-density-wave critical point is
Gaussian, the locally critical point is an interacting fixed point at which
long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau
description for the locally critical point is discussed. It is argued that
these results are robust, that local criticality provides a natural description
of the quantum critical behavior seen in a number of heavy-fermion metals, and
that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text
corrected, version as publishe
Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system
Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis Delta crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis Delta crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis Delta crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis Delta crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis Delta crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis
Measurement of Cosmic-ray Muon-induced Spallation Neutrons in the Aberdeen Tunnel Underground Laboratory
AbstractMuon-induced neutrons are one of the major backgrounds to various underground experiments, such as dark matter searches, low-energy neutrino oscillation experiments and neutrino-less double beta-decay experiments. Previous experiments on the underground production rate of muon-induced neutrons were mostly carried out either at shallow sites or at very deep sites. The Aberdeen Tunnel experiment aims to measure the neutron production rate at a moderate depth of 611 meters water equivalent. Our apparatus comprises of six layers of plastic-scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid-scintillator for both neutron production and detection targets. In this paper, we describe the design and the performance of the apparatus. The preliminary result on the measurement of neutron production rate is also presented
Poultry offal meal in broiler chicken feed
An outstanding feature of poultry production that provides animal protein yield for human feeding is its short production cycle. This characteristic has a linear relationship with waste production. Increasing the inclusion of this residue in diets in the near future is desirable in step with the growth of poultry production since it offers a better environmental and nutritional alternative to current methods. We evaluated the effects on the performance and carcass characteristics of broiler chickens produced by the inclusion of poultry offal meal (POM) in their feed. Treatments consisted of a control diet (corn, Zea mays and soybean, Glycine max) and four diets with inclusion of 30, 60, 90 and 120 g kg-1 of POM. The diets were formulated based on the level of digestible amino acid once categorized as isocalcic, isophosphoric, isosodic, isoenergetic and isonutritive for protein, methionine+cystine, lysine and threonine. The feed's electrolytes were corrected so that each diet had the same electrolytic balance. The variables analyzed were feed intake, weight gain, feed conversion ratio, body weight, carcass yield, chicken cut yield and abdominal fat. Feed intake was not affected by the quantities of POM added. The weight gain, feed conversion, carcass yield and noble cuts presented quadratic responses to the treatments. Abdominal fat increased linearly. The performance of the poultry, and carcass characteristics were maximized by the inclusion of 53 and 65 g kg-1, respectively, of POM in the diet, and the inclusion of 120 g kg-1 of POM provided greater disposition of abdominal fat
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
- …