239 research outputs found
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Recommended from our members
Association between urinary biomarkers of total sugars intake and measures of obesity in a cross-sectional study
Obesity is an important modifiable risk factor for chronic diseases. While there is increasing focus on the role of dietary sugars, there remains a paucity of data establishing the association between sugar intake and obesity in the general public. The objective of this study was to investigate associations of estimated sugar intake with odds for obesity in a representative sample of English adults. We used data from 434 participants of the 2005 Health Survey of England. Biomarkers for total sugar intake were measured in 24Β h urine samples and used to estimate intake. Linear and logistic regression analyses were used to investigate associations between biomarker-based estimated intake and measures of obesity (body mass intake (BMI), waist circumference and waist-to-hip ratio) and obesity risk, respectively. Estimated sugar intake was significantly associated with BMI, waist circumference and waist-to-hip ratio; these associations remained significant after adjustment for estimated protein intake as a marker of non-sugar energy intake. Estimated sugar intake was also associated with increased odds for obesity based on BMI (OR 1.02; 95%CI 1.00-1.04 per 10g), waist-circumference (1.03; 1.01-1.05) and waist-to-hip ratio (1.04; 1.02-1.06); all OR estimates remained significant after adjusting for estimated protein intake. Our results strongly support positive associations between total sugar intake, measures of obesity and likelihood of being obese. It is the first time that such an association has been shown in a nationally-representative sample of the general population using a validated biomarker. This biomarker could be used to monitor the efficacy of public health interventions to reduce sugar intake
Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes
International audienceIn the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ever-increasing accumulation of electronic waste, e-waste, in the environment. This work is targeting copper, the most abundant metal in e-waste that represents up to 20% by weight of printed circuit boards (PCBs). In the first stage, bioleaching was tested for different pulp densities (0.25β1.00% w/v) and successfully used to extract multiple metals from PCBs using the acidophilic bacterium, Acidithiobacillus ferrooxidans. In the second stage, the method focused on the recovery of copper from the bioleachate by electrowinning. Metallic copper foils were formed, and the results demonstrated that 75.8% of copper available in PCBs had been recovered as a high quality copper foil, with 99 + % purity, as determined by energy dispersive X-ray analysis and Inductively-Coupled Plasma Optical Emission Spectrometry. This model of copper extraction, combining bioleaching and electrowinning, demonstrates a closed-loop method of recycling that illustrates the application of bioleaching in the circular economy. The copper foils have the potential to be reused, to form new, high value copper clad laminate for the production of complex printed circuit boards for the electronics manufacturing industry. Graphic Abstract: [Figure not available: see fulltext.] Β© 2020, The Author(s)
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Cabozantinib versus everolimus, nivolumab, axitinib, sorafenib and best supportive care: A network meta-analysis of progression-free survival and overall survival in second line treatment of advanced renal cell carcinoma
Background
Relative effect of therapies indicated for the treatment of advanced renal cell carcinoma
(aRCC) after failure of first line treatment is currently not known. The objective of the present
study is to evaluate progression-free survival (PFS) and overall survival (OS) of cabozantinib
compared to everolimus, nivolumab, axitinib, sorafenib, and best supportive care (BSC)
in aRCC patients who progressed after previous VEGFR tyrosine-kinase inhibitor (TKI)
treatment.
Methodology & findings
Systematic literature search identified 5 studies for inclusion in this analysis. The assessment
of the proportional hazard (PH) assumption between the survival curves for different
treatment arms in the identified studies showed that survival curves in two of the studies did
not fulfil the PH assumption, making comparisons of constant hazard ratios (HRs) inappropriate.
Consequently, a parametric survival network meta-analysis model was implemented
with five families of functions being jointly fitted in a Bayesian framework to PFS, then OS,
data on all treatments. The comparison relied on data digitized from the Kaplan-Meier
curves of published studies, except for cabozantinib and its comparator everolimus where
patient level data were available. This analysis applied a Bayesian fixed-effects network
meta-analysis model to compare PFS and OS of cabozantinib versus its comparators. The
log-normal fixed-effects model displayed the best fit of data for both PFS and OS, and
showed that patients on cabozantinib had a higher probability of longer PFS and OS than
patients exposed to comparators. The survival advantage of cabozantinib increased over
time for OS. For PFS the survival advantage reached its maximum at the end of the first
yearβs treatment and then decreased over time to zero.
Conclusion
With all five families of distributions, cabozantinib was superior to all its comparators with a
higher probability of longer PFS and OS during the analyzed 3 years, except with the Gompertz
model, where nivolumab was preferred after 24 months
IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection
Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis
Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression
It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3β² and 5β² untranslated regions (Pβ=β1.84Γ10β5 and 4.7Γ10β4, respectively) and SNPs that are synonymous-coding (Pβ=β9.9Γ10β4). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (Pβ=β2.6Γ10β10). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated
Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation
Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species
- β¦