26 research outputs found

    institutional framework of in action against land degradation

    Get PDF
    While econometric and spatial data are increasingly helpful to quantify and locate the extent and costs of land degradation, there is still little understanding of the contextual factors that determine or influence the land users' practices that aggravate or counteract land degradation. In this chapter, we take an institutional economic approach to analyse the persistence of degrading practices, the low adoption of sustainable land management (SLM), or the eventual organisational reaction to land degradation. The chapter reviews four examples of land degradation in different contexts to reveal the multiple driving forces and contextual factors. We then propose a conceptual framework to better understand the incentive structure and factors determining the land users' decision making. A layered analysis of the social phenomena is applied, following Williamson (2000). The chapter shows how actions at different layers can help improve land management. The chapter concludes with practical recommendations for the institutional economic analysis of land degradation

    Food, Nutrition and Agrobiodiversity Under Global Climate Change

    Get PDF
    Available evidence and predictions suggest overall negative effects on agricultural production as a result of climate change, especially when more food is required by a growing population. Information on the effects of global warming on pests and pathogens affecting agricultural crops is limited, though crop–pest models could offer means to predict changes in pest dynamics, and help design sound plant health management practices. Host-plant resistance should continue to receive high priority as global warming may favor emergence of new pest epidemics. There is increased risk, due to climate change, to food and feed contaminated by mycotoxin-producing fungi. Mycotoxin biosynthesis gene-specific microarray is being used to identify food-born fungi and associated mycotoxins, and investigate the influence of environmental parameters and their interactions for control of mycotoxin in food crops. Some crop wild relatives are threatened plant species and efforts should be made for their in situ conservation to ensure evolution of new variants, which may contribute to addressing new challenges to agricultural production. There should be more emphasis on germplasm enhancement to develop intermediate products with specific characteristics to support plant breeding. Abiotic stress response is routinely dissected to component physiological traits. Use of transgene(s) has led to the development of transgenic events, which could provide enhanced adaptation to abiotic stresses that are exacerbated by climate change. Global warming is also associated with declining nutritional quality of food crops. Micronutrient-dense cultivars have been released in selected areas of the developing world, while various nutritionally enhanced lines are in the release pipeline. The high-throughput phenomic platforms are allowing researchers to accurately measure plant growth and development, analyze nutritional traits, and assess response to stresses on large sets of individuals. Analogs for tomorrow’s agriculture offer a virtual natural laboratory to innovate and test technological options to develop climate resilience production systems. Increased use of agrobiodiversity is crucial to coping with adverse impacts of global warming on food and feed production and quality. No one solution will suffice to adapt to climate change and its variability. Suits of technological innovations, including climate-resilient crop cultivars, will be needed to feed 9 billion people who will be living in the Earth by the middle of the twenty-first century

    Recent volcano-tectonic activity of the Ririba rift and the evolution of rifting in South Ethiopia

    No full text
    International audienceThe relationships between volcanic activity and tectonics at the southernmost termination of the Main Ethiopian Rift (MER), East Africa, still represent a debated problem in the MER evolution. New constraints on the timing, evolution and characteristics of the poorly documented volcanic activity of the Dilo and Mega volcanic fields (VF), near the Kenya-Ethiopia border are here presented and discussed. The new data delineate the occurrence of two distinct groups of volcanic rocks: 1) Pliocene subalkaline basalts, observed only in the Dilo VF, forming a lava basement faulted during a significant rifting phase; 2) Quaternary alkaline basalts, occurring in the two volcanic fields as pyroclastic products and lava flows issued from monogenetic edifices and covering the rift-related faults. 40Ar/39Ar dating constrains the emplacement time of the large basal lava plateau to ~3.7 Ma, whereas the youngest volcanic activity characterising the two areas dates back to 134 ka (Dilo VF) to as recent as the Holocene (Mega VF). Volcanic activity developed along tectonic lineaments independent from those of the rift. No direct relations are observed between the Pliocene, roughly N-S-trending major boundary faults of the Ririba rift and the NE-SW-oriented structural trend characteristic of the Quaternary volcanic activity. We speculate that this change in structural trend may be the expression of (1) inherited crustal structures affecting the distribution of the recent volcanic vents, and (2) a local stress field controlled by differences in crustal thickness, following a major episode of reorganization of extensional structures in the region due to rift propagation and abandonmen

    Data from: On the origin of sweet potato (Ipomoea batatas (L.) Lam) genetic diversity in New Guinea, a secondary centre of diversity

    No full text
    New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm previous results, suggesting that New Guinea landraces are principally derived from the Northern neotropical genepool (Camote and Batata lines, from the Caribbean and Central America). However, chloroplast data suggest that South American clones (early Kumara line clones or, more probably, later reintroductions) were also introduced into New Guinea and then recombined with existing genotypes. The frequency distribution of pairwise distances between New Guinea landraces suggests that sexual reproduction, rather than somaclonal variation, has played a predominant role in the diversification of sweet potato. The frequent incorporation of plants issued from true seed by farmers, and the geographical and cultural barriers constraining crop diffusion in this topographically and linguistically heterogeneous island, has led to the accumulation of an impressive number of variants. As the diversification of sweet potato in New Guinea is primarily the result of farmers’ management of the reproductive biology of their crop, we argue that on-farm conservation programmes that implement distribution of core samples (clones representing the useful diversity of the species) and promote on-farm selection of locally adapted variants may allow local communities to fashion relatively autonomous strategies for coping with ongoing global change
    corecore