910 research outputs found

    Oxygen Requirement and Inhibition of C4 Photosynthesis . An Analysis of C4 Plants Deficient in the C3 and C4 Cycles

    Get PDF
    The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cycle-limited transformant of Flaveria bidentis (an antisense ribulose-1,5-bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a result of higher levels of photorespiration. The optimal O2 partial pressure for photosynthesis was reduced from approximately 5 kPa O2 to 1 to 2 kPa O2, becoming similar to that of C3 plants. Therefore, the higher O2 requirement for optimal C4 photosynthesis is specifically associated with the C4 function. With the Rubisco-limited F. bidentis, there was less inhibition of photosynthesis by supraoptimal levels of O2 than in the wild type. When CO2 fixation by Rubisco is limited, an increase in the CO2 concentration in bundle-sheath cells via the C4 cycle may further reduce the oxygenase activity of Rubisco and decrease the inhibition of photosynthesis by high partial pressures of O2 while increasing CO2 leakage and overcycling of the C4 pathway. These results indicate that in C4 plants the investment in the C3 and C4 cycles must be balanced for maximum efficiency

    3D Scanning System for Automatic High-Resolution Plant Phenotyping

    Full text link
    Thin leaves, fine stems, self-occlusion, non-rigid and slowly changing structures make plants difficult for three-dimensional (3D) scanning and reconstruction -- two critical steps in automated visual phenotyping. Many current solutions such as laser scanning, structured light, and multiview stereo can struggle to acquire usable 3D models because of limitations in scanning resolution and calibration accuracy. In response, we have developed a fast, low-cost, 3D scanning platform to image plants on a rotating stage with two tilting DSLR cameras centred on the plant. This uses new methods of camera calibration and background removal to achieve high-accuracy 3D reconstruction. We assessed the system's accuracy using a 3D visual hull reconstruction algorithm applied on 2 plastic models of dicotyledonous plants, 2 sorghum plants and 2 wheat plants across different sets of tilt angles. Scan times ranged from 3 minutes (to capture 72 images using 2 tilt angles), to 30 minutes (to capture 360 images using 10 tilt angles). The leaf lengths, widths, areas and perimeters of the plastic models were measured manually and compared to measurements from the scanning system: results were within 3-4% of each other. The 3D reconstructions obtained with the scanning system show excellent geometric agreement with all six plant specimens, even plants with thin leaves and fine stems.Comment: 8 papes, DICTA 201

    Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors

    Get PDF
    Rapid development of plants is important for the production of 'baby-leaf' lettuce that is harvested when plants reach the four- to eight-leaf stage of growth. However, environmental factors, such as high or low temperature, or elevated concentrations of salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide valuable information to breeders and growers. The objective of the present study was to test the feasibility of using non-destructive phenotyping with optical sensors for the evaluations of lettuce plants in early stages of development. We performed the series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence imaging can determine phenotypic changes manifested on lettuce plants subjected to the extreme temperature and salinity stress treatments. Our results indicate that top view optical sensors alone can accurately determine plant size to approximately 7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence imaging revealed photoinhibition and reduction of plant growth caused by the extreme growing temperatures (3 and 39Ā°C) and salinity (100 mM NaCl). Though no significant correlation was found between Fv/Fm and decrease in plant growth due to stress when comparisons were made across multiple accessions, our results indicate that lettuce plants have a high adaptability to both low (3Ā°C) and high (39Ā°C) temperatures, with no permanent damage to photosynthetic apparatus and fast recovery of plants after moving them to the optimal (21Ā°C) temperature. We have also detected a strong relationship between visual rating of the green- and red-leaf color intensity and RCC and RAC, respectively. Differences in RAC among accessions suggest that the selection for intense red color may be easier to perform at somewhat lower than the optimal temperature. This study serves as a proof of concept that optical sensors can be successfully used as tools for breeders when evaluating young lettuce plants. Moreover, we were able to identify the locus for light green leaf color (qLG4), and position this locus on the molecular linkage map of lettuce, which shows that these techniques have sufficient resolution to be used in a genetic context in lettuce.IS acknowledges the receipt of a fellowship from the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems in 2013

    Effect of leaf temperature on estimating physiological traits of wheat leaves from hyperspectral reflectance

    Get PDF
    A growing number of leaf traits can be predicted from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area, nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. The function predicting Rubisco capacity normalised to 25 Ā°C predicted the same value, regardless of leaf temperatures ranging from 20 to 35Ā°C. Leaf temperature affected none of the predicted traits: Vcmax25, J, chlorophyll content, LMA, N content per unit leaf area or Vcmax25/N. However, as others have derived models to predict Rubisco activity that includes variation associated with leaf temperature, we discuss whether these functions may include a temperature signal within the reflectance spectra

    Photosynthetic variation and responsiveness to COā‚‚ in a widespread riparian tree

    Get PDF
    Phenotypic responses to rising CO2 will have consequences for the productivity and management of the worldā€™s forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (Ļ†). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in Ļ† could have broader implications for productivity of red gum forests.This research was supported by funding from the CSIRO Transformational Biology Catalytic Platform. Experiments utilised the infrastructure of the Australian Plant Phenomics Facility, Canberra Australia

    A multiple species, continent-wide, million-phenotype agronomic plant dataset

    Get PDF
    A critical shortage of 'big' agronomic data is placing an unnecessary constraint on the conduct of public agronomic research, imparting barriers to model development and testing. Here, we address this problem by providing a large non-relational database of agronomic trials, linked to intensive management and observational data, run under a unified experimental framework. The National Variety Trials (NVTs) represent a decade-long experimental trial network, conducted across thousands of Australian field sites using highly standardised randomised controlled designs. The NVTs contain over a million machine-measured phenotypic observations, aggregated from density-controlled populations containing hundreds of millions of plants and thousands of released plant varieties. These data are linked to hundreds of thousands of metadata observations including standardised soil tests, fertiliser and pesticide input data, crop rotation data, prior farm management practices, and in-field sensors. Finally, these data are linked to a suite of ground and remote sensing observations, arranged into interpolated daily- and ten-day aggregated time series, to capture the substantial diversity in vegetation and environmental patterns across the continent-spanning NVT network

    Response of plasmodesmata formation in leaves of Cā‚„ grasses to growth irradiance

    Get PDF
    Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cellinterface in C4leaves is a key requirement for C4photosynthesis and occurs viaplasmodesmata (PD). Here, we investigated how growth irradiance affects PDdensity between M and BS cells and between M cells in two C4species using ourPD quantification method, which combines threeā€dimensional laser confocal fluores-cence microscopy and scanning electron microscopy. The response of leaf anatomyand physiology of NADPā€ME species,Setaria viridisandZea maysto growth under dif-ferent irradiances, low light (100Ī¼mol māˆ’2sāˆ’1), and high light (1,000Ī¼mol māˆ’2sāˆ’1),was observed both at seedling and established growth stages. We found that theeffect of growth irradiance on C4leaf PD density depended on plant age and species.The high light treatment resulted in two to fourā€fold greater PD density per unit leafarea than at low light, due to greater area of PD clusters and greater PD size in highlight plants. These results along with our finding that the effect of light on Mā€BS PDdensity was not tightly linked to photosynthetic capacity suggest a complex mecha-nism underlying the dynamic response of C4leaf PD formation to growth irradiance.This research was funded by the Australian Government through the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE1401000015). F. R. D is also financially supported by the Lee Rice Foundation scholarship through the International Rice Research Institute, Philippines
    • ā€¦
    corecore