213 research outputs found

    Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature

    Get PDF
    A microarray analysis was performed to study the effect of varying combinations of water activity and temperature on the activation of aflatoxin biosynthesis genes in Aspergillus flavus grown on YES medium. Generally A. flavus showed expression of the aflatoxin biosynthetic genes at all parameter combinations tested. Certain combinations of aw and temperature, especially combinations which imposed stress on the fungus resulted in a significant reduction of the growth rate. At these conditions induction of the whole aflatoxin biosynthesis gene cluster occurred, however the produced aflatoxin B1 was low. At all other combinations (25 °C/0.95 and 0.99; 30 °C/0.95 and 0.99; 35 °C/0.95 and 0.99) a reduced basal level of cluster gene expression occurred. At these combinations a high growth rate was obtained as well as high aflatoxin production. When single genes were compared, two groups with different expression profiles in relation to water activity/temperature combinations occurred. These two groups were co-ordinately localized within the aflatoxin gene cluster. The ratio of aflR/aflJ expression was correlated with increased aflatoxin biosynthesis

    Shift of microbial communities and reduced enzymatic activity in soil under plastic mulching system in strawberry cultivation

    Get PDF
    The use of plastic mulching (PM) in agriculture has strongly increased in the last years. Improved water saving and higher soil temperature are some advantages of this management. Yet, an intensive use of PM has been recently linked to negative effects on soil quality. The aim of this study is thus to assess the effects of long-term plastic mulching (PM) on soil microbial indicators. PM was compared with the use of wheat straw mulching (SM), an also widely used mulch material. Samples were collected at two depths (0-5 and 5-10 cm) from strawberry fields, after 4-year management. Cultivation in PM and SM was done in a ridge-furrow system with subsurface irrigation. Soil characterization comprised soil texture and aggregate stability, soil organic carbon, pH and water content. Soil microbial analysis included: Soil microbial biomass (Cmic), a fraction of soil cultivable fungi (CFU values), soil bacteria (16S rRNA), denitrifying community (nirK, nirS, narG, napA genes), soil enzyme activity (C-Chitinase, P-Phosphatase and N Leucine-aminopeptidase), deoxynivalenol (DON) content and Cmic:Corg ratio. Positive effects on soil physicochemical properties were observed under PM as compared to SM, reflected by a higher soil carbon content and better aggregate stability (p>0.05). Yet, soil microbial analysis revealed some differences between managements. Cmic values were comparable in both systems, showing no differences in soil microbial biomass. In the same way, the analysis of functional genes of the N cycle and the activity of the enzymes P-Phosphatase and N Leucine-aminopeptidase was not affected by the mulching treatment. But, the abundance of bacteria (18%) and a fraction of soil cultivable fungi were reduced by respectively 18 and 62% under PM. Since the Cmic values remained similar between treatments, this accounts for a shift of microbial communities under PM. Additionally, C-Chitinase activity declined under PM. Interestingly, this enzyme correlated positively with CFU values (r=0.781, p=0.001), suggesting that a reduction of the activity is a consequence of the reduction of the fungal biomass. Additionally, a higher deoxynivalenol concentration (2.2 ± 2.4 µg kg-1) and a reduced Cmic:Corg ratio (1.3±0.3%) were observed under PM, indicative of less appropriate soil conditions after long-term PM management

    Climate change increases risk of fusarium ear blight on wheat in central China

    Get PDF
    This is the peer reviewed version of the following article: X. Zhang, et al, 'Climate change increases risk of fusarium ear blight on wheat in central China', Annals of Applied Biology, Vol. 164 (3): 384-395, May 2014, which has been published in final form at https://doi.org/10.1111/aab.12107. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.To estimate potential impact of climate change on wheat fusarium ear blight, simulated weather for the A1B climate change scenario was imported into a model for estimating fusarium ear blight in central China. In this work, a logistic weather-based regression model for estimating incidence of wheat fusarium ear blight in central China was developed, using up to 10 years (2001-2010) of disease, anthesis date and weather data available for 10 locations in Anhui and Hubei provinces. In the model, the weather variables were defined with respect to the anthesis date for each location in each year. The model suggested that incidence of fusarium ear blight is related to number of days of rainfall in a 30-day period after anthesis and that high temperatures before anthesis increase the incidence of disease. Validation was done to test whether this relationship was satisfied for another five locations in Anhui province with fusarium ear blight data for 4 to 5 years but no nearby weather data, using weather data generated by the regional climate modelling system PRECIS. How climate change may affect wheat anthesis date and fusarium ear blight in central China was investigated for period 2020-2050 using wheat growth model Sirius and climate data generated by PRECIS. The projection suggested that wheat anthesis dates will generally be earlier and fusarium ear blight incidence will increase substantially for most locations.Peer reviewedFinal Accepted Versio

    A State-Dependent Quantification of Climate Sensitivity Based On Paleodata of the Last 2.1 Million Years

    Get PDF
    The evidence from both data and models indicates that specific equilibrium climate sensitivity S[X]—the global annual mean surface temperature change (ΔTg) as a response to a change in radiative forcing X (ΔR[X])—is state dependent. Such a state dependency implies that the best fit in the scatterplot of ΔTg versus ΔR[X] is not a linear regression but can be some nonlinear or even nonsmooth function. While for the conventional linear case the slope (gradient) of the regression is correctly interpreted as the specific equilibrium climate sensitivity S[X], the interpretation is not straightforward in the nonlinear case. We here explain how such a state-dependent scatterplot needs to be interpreted and provide a theoretical understanding—or generalization—how to quantify S[X] in the nonlinear case. Finally, from data covering the last 2.1 Myr we show that—due to state dependency—the specific equilibrium climate sensitivity which considers radiative forcing of CO2 and land ice sheet (LI) albedo, math formula, is larger during interglacial states than during glacial conditions by more than a factor 2

    Comparative Growth Inhibition of Bread Spoilage Fungi by Different Preservative Concentrations Using a Rapid Turbidimetric Assay System

    Get PDF
    © 2021 Garcia, Garcia-Cela, Magan, Copetti and Medina. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/Bread and intermediate moisture bakery products are mainly spoiled by yeasts and filamentous fungi. The inoculum load and preservation system used determines their shelf life. To extend the shelf life of such commodities, the use of chemical preservatives is the most common way to try and control the initiation of mold spoilage of bread. This study has utilized a rapid turbidimetric assay system (Bioscreen C) to examine the temporal efficacy of calcium propionate (CP) and potassium sorbate (PS) for controlling the growth of important bread spoilage fungi. The objectives were to compare the temporal growth of strains of three important spoilage fungi Hyphopichia burtonii (HB17), Paecilomyces variotii (PV11), and Penicillium roqueforti (PR06) isolated from visibly molded bread to (a) different concentrations of CP and PS (0–128 mM), (b) temperatures (25°C, 30°C), (c) water activity (aw; 0.95, 0.97), and (d) pH (5.0, 5.5). All three abiotic factors, pH, aw, and temperature, and preservative concentrations influenced the relative growth of the species examined. In general, PS was more effective than CP in inhibiting the growth of the strains of these three species. In addition, the Time to Detection (TTD) for the efficacy of the preservatives under the interacting abiotic factors was compared. The strain of Paecilomyces variotii (PV10) was the most tolerant to the preservatives, with the shortest TTD values for both preservatives. P. roqueforti was the most sensitive with the longest TTD values under all conditions examined. These results are discussed in the context of the evolution of resistance to food-grade preservatives by such spoilage fungi in bakery products.Peer reviewedFinal Published versio

    Laminar Cortical Dynamics of 3D Surface Perception: Stratification, transparency, and Neon Color Spreading

    Get PDF
    How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.Air Force Office of Naval Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Mutagens affect food and water biodeteriorating fungi

    Get PDF
    Many areas of food mycology could be affected detrimentally by mutation of wild type fungi. Some of these will contact mutagens from pre-isolation to experimentation and the effect on fungi isolated from mycotoxin-contaminated food is assessed for the first time in this review. However, this mutagen issue is not considered by other authors in primary research papers, which is relevant to molecular biology techniques for gene sequencing, phylogenetics, diagnostics and mycotoxin production. The presence of mutagens is anathema to methods for DNA analysis at the experimental design level and concepts such as cryptic species and correlating anamorphs with teleomorphs are affected. Strains held in culture collections may be artifacts. Methods to ameliorate the problem are provided herein.FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project ‘‘BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes’’, REF. NORTE-07-0124-FEDER- 000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER

    Ecophysiology of Aspergillus Section Nigri Species Potential Ochratoxin A Producers

    Get PDF
    After aflatoxins, ochratoxin A (OTA) is the most studied mycotoxin due to the toxicological significance in human and animal diets. OTA presence has been extensively reported worldwide in the last decade in several agricultural products. The main OTA producer in tropical and temperate climates is Aspergillus carbonarius followed by species belonging to A. niger aggregate. Currently, many scientists worldwide have studied the influence of water activity and temperature for growth and biosynthesis of OTA by these species on synthetic media. This article reviews ecophysiological studies of Aspergillus section Nigri strains on synthetic media and natural substrates. The results of these investigations suggest that significant amounts of OTA can be produced in only five days and that the use of different storage practices, such as aW and temperature levels below 0.930 and 15 °C, respectively, allow controlling fungal contamination and minimizing the OTA production in several products as peanuts, corn, dried grapes and derived products for human consumption
    • …
    corecore