404 research outputs found

    Topological Defects and Non-homogeneous Melting of Large 2D Coulomb Clusters

    Full text link
    The configurational and melting properties of large two-dimensional clusters of charged classical particles interacting with each other via the Coulomb potential are investigated through the Monte Carlo simulation technique. The particles are confined by a harmonic potential. For a large number of particles in the cluster (N>150) the configuration is determined by two competing effects, namely in the center a hexagonal lattice is formed, which is the groundstate for an infinite 2D system, and the confinement which imposes its circular symmetry on the outer edge. As a result a hexagonal Wigner lattice is formed in the central area while at the border of the cluster the particles are arranged in rings. In the transition region defects appear as dislocations and disclinations at the six corners of the hexagonal-shaped inner domain. Many different arrangements and type of defects are possible as metastable configurations with a slightly higher energy. The particles motion is found to be strongly related to the topological structure. Our results clearly show that the melting of the clusters starts near the geometry induced defects, and that three different melting temperatures can be defined corresponding to the melting of different regions in the cluster.Comment: 7 pages, 11 figures, submitted to Phys. Rev.

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    Generic properties of a quasi-one dimensional classical Wigner crystal

    Get PDF
    We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged particles, interacting through a screened Coulomb potential. The ground state energy was calculated and, depending on the density and the screening length, the system crystallizes in a number of chains. As a function of the density (or the confining potential), the ground state configurations and the structural transitions between them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes of the Wigner crystal and the magneto-phonons when an external constant magnetic field BB is applied. At finite temperature the melting of the system was studied via Monte Carlo simulations using the modifiedmodified LindemannLindemann criterioncriterion (MLC). The melting temperature as a function of the density was obtained for different screening parameters. Reentrant melting as a function of the density was found as well as evidence of directional dependent melting. The single chain regime exhibits anomalous melting temperatures according to the MLC and as a check we study the pair correlation function at different densities and different temperatures, formulating a different criterion. Possible connection with recent theoretical and experimental results are discussed and experiments are proposed.Comment: 13 pages text, 21 picture

    Supersymmetry without R-parity : Constraints from Leptonic Phenomenology

    Full text link
    R-parity conservation is an {\it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV parametrization used in this paper provides a workable framework to analyze phenomenology of the most general theory of SUSY without R-parity. We perform a comprehensive study of leptonic phenomenology at tree-level. Experimental constraints on various processes are studied individually and then combined to yield regions of admissible parameter space. In particular, we show that large R-parity violating bilinear couplings are not ruled out, especially for large tanβ\tan\beta.Comment: 56 pages Revtex with figures incorporated; typos (including transcription typo in Table II) and minor corrections; proof-read version, to appear in Phys. Rev.

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Search for dark matter signals with Fermi-LAT observation of globular clusters NGC 6388 and M 15

    Full text link
    The globular clusters are probably good targets for dark matter (DM) searches in γ\gamma-rays due to the possible adiabatic contraction of DM by baryons. In this work we analyse the three-year data collected by {\it Fermi} Large Area Telescope of globular clusters NGC 6388 and M 15 to search for possible DM signals. For NGC 6388 the detection of γ\gamma-ray emission was reported by {\it Fermi} collaboration, which is consistent with the emission of a population of millisecond pulsars. The spectral shape of NGC 6388 is also shown to be consistent with a DM contribution if assuming the annihilation final state is bbˉb\bar{b}. No significant γ\gamma-ray emission from M 15 is observed. We give the upper limits of DM contribution to γ\gamma-ray emission in both NGC 6388 and M 15, for annihilation final states bbˉb\bar{b}, W+WW^+W^-, μ+μ\mu^+\mu^-, τ+τ\tau^+\tau^- and monochromatic line. The constraints are stronger than that derived from observation of dwarf galaxies by {\it Fermi}.Comment: 17 pages, 6 figures, accepted by JCA
    corecore