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Generic properties of a quasi-one-dimensional classical Wigner crystal
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We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged
particles, interacting through a screened Coulomb potential. The ground-state energy was calculated and,
depending on the density and the screening length, the system crystallizes in a number of chains. As a function
of the density(or the confining potential the ground state configurations and the structural transitions between
them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram
at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes
of the Wigner crystal and the magnetophonons when an external constant magneBddialgplied. At finite
temperature the melting of the system was studied via Monte Carlo simulations usimgdifeed Lindemann
criterion (MLC). The melting temperature as a function of the density was obtained for different screening
parameters. Reentrant melting as a function of the density was found as well as evidence of directional
dependent melting. The single-chain regime exhibits anomalous melting temperatures according to the MLC
and as a check we study the pair-correlation function at different densities and different temperatures, which
allowed us to formulate a different melting criterion. Possible connection with recent theoretical and experi-
mental results are discussed and experiments are proposed.
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I. INTRODUCTION interaction among patrticles and the external potential leads
to a rich structural phase diagram as a function of the screen-
Recently there has been a great deal of interest in mesdng length\ and the densityr of the system. The structural
scopic systems consisting of interacting particles in low di-units (at temperaturd =0 K) are parallel chains of particles
mensions or confined geometries. A class of quantum anisdhe number of which depends on the values.andn. The
tropic systems exhibiting “stripe” behavior appears in the transition from one configuration to the other can be obtained
quantum Hall effect,in oxide manganites, and in high  Vvia a first- or a second-order transition.
superconductorsyhere electronic strong correlations are re-  Before proceeding further, we should comment on the
sponsible for the formation of these inhomogeneous phasepossibility of two-dimensional crystalline order. According
Another class of confined quasi-one-dimensioi@1D) ge-  to the Mermin-Wagner theoréfhthere is no true long-range
ometries appears in many diverse fields of research and sonsgystalline order in two dimensions. However, this theorem
typical and important examples from the experimental poinis only strictly valid when the potential falls off faster than
of view are: electrons on liquid Heliufi* microfluidic ~ 1/r and in the thermodynamic limit. When the same argu-
devices’ colloidal suspensiorfsand confined dusty plasna. ments of the theorem are applied to a large but finite system,
A major phenomenon which is expected to occur inno inconsistencies arise from the assumption of crystalline
charged particles interacting via a Coulomb or screened Cowgrder. Thus any system that can be studied in laboratory or in
lomb potential is Wigner crystallizatiofWC) (Ref. 8 atlow  computer simulations can exhibit crystalline orfe®n the
enough temperatures and densities when the potential energyher hand, short-range order is expected to form even in the
overwhelms the kinetic energy. Indeed, evidence of such ghermodynamic limit.
type of transition was found very recentiy experiments on In a related work® which discussed the temperature
electrons on the surface of liquid Helium, where the elecequilibration of a one-dimensional Coulomb chain, two dif-
trons were confined by metallic gates and exhibited dynamiferent equilibration temperatures were assigried#ndT))),
cal ordering in the form of filaments. This particular experi- reflecting the different behavior of the modes due to the
ment posed many interesting questions regarding the natusérong confinement.
of the transition to WC, its density dependence, and the melt- The WC in strictly one-dimensional and in the quantum
ing. Furthermore, the considered system has been proposeggime was studied by Schuft2He found that for arbitrarily
as a possible step towards the realization of a quantum conweak Coulomb interaction the density correlations at wave
puter with electrons floating on liquid Heliufh. vector &g decay extremely slowlythe most slowly decay
In this paper, as a first step towards the understanding da&rm is «exp(—cyIn x)].
the behavior of these systems, we start with a two- Other remarkable work on the quantum transport and pin-
dimensional system consisting of an infinite number ofning in the presence of weak disorder, where it was shown
charged particles and we impose a parabolic confining poterthat quantum fluctuations soften the pinning barrier and
tial in one direction. The particles interact with a Yukawa- charge transfer occurs due to thermally assisted tunneling, is
type potential where the screening length is an external padescribed in Ref. 14.
rameter. Physically, it can be adjusted, e.g., by the gate In addition to the structural properties, it is instructive to
voltage that confines the electrons. The combination of thatudy the normal modes of these kind of anisotropic systems.
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There are optical and acoustical branches and their number is 92 expl — |;_ I.‘T|/)\)
equal to the number of chains. The acoustical modes corre- ~ H=— >, S
spond to motion along the unconfined direction and the op- € 17 ri—rj]
tical ones to motion along the confined direction. There is h is th f h particle is the dielectri i
softening of an optical phonon at those values of the density’ €r€M IS the Mass ot each particie,is the diefectric con

for which we have a continuous structural transition. We als tant of the medium particles tha_t are moving @, mea-
study the collective excitations in the presence of a constal ures the strength of the cqnfmlng potential. T_he Ha”ﬁ"'
magnetic field perpendicular to the plane of the system.Onlan can _be rewritten in %q',gnensmr.ﬂess form, introducing
These modesgmagnetophononscan be directly detected 1€ guantitiesro=(2q/mewg)™ as unit of length ands,

1
+ Z Emwgyiz, (1)

experimentally>16 = (mw2q*/2¢2?)*" as unit of energy. Then it takes the form
Another important aspect of the problem is the melting as .
the temperature is raised. The mechanisms of melting is of exp(—k|r{ —ri])
L . . . H/_z J E 12 ®)
great scientific and technological importance. In infinite 2D - = = i

systems theory/ based on unbinding of defects, predicts a
two-stage melting where the two stages are continuous. R%\'/hereH’

C?Q;;E‘Egrgg'gﬂnsél_lgi'riser?;g]ne;'nger?;(;gllo(;?gjrlﬁcig:é?één;hetion is particularly interesting because now the Hamiltonian
P P P no longer depends on the specifics of the system and be-

number of novel phases and the possibility of reer'lt.rant melt(':omes only a function of the density and the dimensionless
ing. These results depend on the commensurability gatio

> . inverse screening length. The quantities introduced allow us
=aldey, Wherea is the spacing between the Bragg planes g 'eng d

. . .~"to define a dimensionless temperatdre=T/T, with T
of the 2D system and,,, is the period of the external peri- =(mw|2 4/282)I1’3k’1l P o WIth To
odic  potential. This kind of system was realized For%ﬂe calcula?ioﬁs of the ground-state energy we used a
experimentally® in 2D colloids in the presence of two inter- g gy

fering laser beams. The present work is complementary témﬁg%ﬁn\,\/ﬁ; tarllr:eazg%?jlarcdaﬁils gogﬁs 21r|]dorli\t/lhonqteTh(i:§rrlg-
the work of Radzihovsky, Frey, and Nels8rin the sense P 9 '

. - AR ) .. cursive algorithm consists in displacing randomly one par-
that a single confining potential is considered here, which is; . . T :

; . . icle and accepting the new configuration if its energy is
not repeated in space. Therefore it can be viewed as a stu

o focused prion of h nfinite 2D ystem, e we pyf 01 1 1 IGvous one e e confurton e
attention to only one potential trough neglecting the interac- g gy P P P y

tion with the rest. With respect to the melting, we found the5<eXp(_AE/T)’ where  is a random number between 0

following remarkable resultdi) a phase diagram which ex- and 1 andAE is the increment In the energy. We have al-
hibits reentrant melting behavior as a function of the densit),owed the system to apprqach %:Q’ %Sqwllbrlum state at some
where the different configurations are exploréd, a regime temperaturef, after executing L .1 Monte Carlg steps.

of frustration exists close to the structural transitions, anciNe have use_q the technl_que O.f S'_mU|ated annealing to reach
(iii ) there is evidence that the system first melts in the un-heT:0 equilibrium configuration: first the system has been

confined direction and subsequently in the direction where iPeated up anq then cgoled down to avery low temperature.
is confined exhibiting a regime similar to thecked floating n the smulauons typlqa!ly 300 particles were u.sed and in
solid regime found in Ref. 18 order to simulate an infinitely long system periodical bound-

The paper is organized as follows. In Sec. Il, we presenf’Iry conditions(Born-Von Karman were introduced.

the model and the methods used. In Sec. Ill, we study the
zero-temperature phase diagram and properties of the struc- . GROUND-STATE CONFIGURATIONS
tural transitions. Sec. IV is devoted to the study of the nor-
mal modes of the system and in the presence of, or without,
an external magnetic fiel. In Sec. V, we study the melting ~ The charged particles crystallize in a certain number of
and analyze furthermore in some details the problem of théhains. Each chain has the same density resulting in a total
single-chain melting. one-dimensional density,. It is then possible to calculate
Finally we discuss the connections with recent experithe energy per particle for each configuration and to check
mental results and suggest experiments where this behavigte favored one as a function of the parameters of the system.
can be observed in Sec. VI. A very brief account of some off a is the separation between two adjacent particles in the

=H/Eg, k=rg/\, andf’=F/ro. This transforma-

A. Phase diagram

these results was presented in Ref. 20. same chain, we can define the dimensionless linear density
ne=Irq/a, wherel is the number of chains.
Il. MODEL AND METHODS In the case of multiple chains, in order to have a better

packing (or in other words to minimize the interaction en-
The system is modeled by an infinite number of classi-ergy by maximizing the separation among particles in differ-
cally charged particles with identical chargemoving in @  ent chaing the chains are staggered with respect to each
plane with coordinates=(x,y). The particles interact other bya/2 in thex direction. In an infinite lattice this will
through a Yukawa potential and an additional parabolic polead to the hexagonal W&.We calculated the energy per
tential confines the particle motion in thedirection. The particle as a function of the density for the first six possible
Hamiltonian of the system is given by configurations of the system.
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FIG. 1. The energy per particle as a function
of density fork=1.
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If the particles crystallize in a single chain, the minimum
energy is obtained when the particles are placed onythe
axis, where the confining potential is zero. In this case the

linear density isn,=r,/a and thex coordinate of the par-
ticles arexj=ia, with i=0,=1,=2,...,t». The energy
per particle is

©

~ 1 ~
E1=n92 Texq— kjIng).

=1

)

"2
Ne

Jr

AE;=E (k=0)—E,=—| >, 2®,(jw/2n,)

J#0

2
~o] 2
+§o ®,(n?] )} e (5)

In the two-chain configuration the particles crystallize in two
parallel lines separated by a distaretend displaced by a
distancea/2 along they axis. The energy per particle in this

case is

The case of Coulomb interaction is treated using the Ewald
summation method so that the summation over long distance
can be done effectively. Following the standard
proceduré'~2*we obtain forE,

=2
n . ~
—= lim | >, 2e”2"*®(j=/2n,)

\/; x—0 i

Ei(xk=0)=

- _ 1 -
+ D, D,(n2(x—])2) +=—D,(n?x?) —
J#0 e e

(4)

where ®,(x)= /7 [dtexp(-t])1k,
— JmIxerfc(\x), and erfcg)=1—2//7 e Tdt.
The first summation contains a divergent termj&at0
coming from the lower limit of the integration in the function
®,(x=0). This divergence is remedied if we subtract the
interaction energyE,, of the negatively charged particles
with the positive background which also diverges logarith-
mically in one dimension. In that case we can proceed using
the limit lim, . ox~* erf(x) = 2/\/m:

(%)
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FIG. 2. The zero-temperature structural phase diagram.
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FIG. 3. The lateral position of the chains in the Wigner crystal 07 " A
state as a function of the linear density for=1. The thin dotted N 4
line represent the lateral position of the chains for metastable states, 06 e . “
which can be formed for density for which the two- and three-chain = R i .
configurations are the stable states. Ll o5l N Lo .

LLl ’ A . . .
wheren,=2r,/a andc=d/a. The first term in Eq(6) is the 04l . ' k=1
potential energy due to the confining potential, the second o’ -

. . L . b 4 chains e internal rows
term is the energy due to the intrachain interaction, and the 03 L0 4 external rows
last term represents the interchain interactions. Minimizing L L L ' '

E, with respect to the separation between the chainse 20 25 30 ii 35 40 4
obtained the ground-state energy for the two-chain configu- 0.09 e
ration. ’ (c) 3 chains 4 chains

Similar straightforward but tedious calculations were 0.08 | ) N
done for the other multichain structures. By symmetry there 007 N At
is one intrachain distance in the three-chain structure, two in ‘ '4 . . at

. . . . . o chains a2t

the four- and five-chain structures, and three in the six-chain il 0.06f R
structure. The corresponding expressions for the energy are w At
relegated, for completeness, to Appendix A. 0.05r 1 s

Calculating the energy minimum for each configuration 0.04 , RE NP

~ A ) =

for different values of, at fixed x, we obtain the energy per 0.03 _A“ et — k=10
particleE. In Fig. 1 we showE as a function of the density R I AR o ntemal rows
n, for k=1. Note that for certain density ranges more than 0.02%= 5 = = 9

one configuration can be stab(this is made more clear in

the insets of Fig. 1 fon, around 2 and 4)7 In the low-
density limit the energy per patrticle is given by the first term

of Eq. (3), E=ngexp(— «/ny), while the rest of the curve can

be fitted toE=—0.0194€2+0.7200,—0.245 with an error
less than 2.3%.

Calculating the energy minima for diﬁereﬁg and differ-  different chains are depicted in Fig. 3 as a function of the
ent k we obtain the zero-temperature phase diagram of Figdensityﬁe. In the case of two and three-chain the interchain
2. For k=0 we recover the Coulomb limit. We found that distance increases as the density increases. This is also true
the energy obtained by the analytical method is in excellenfor the four-chain configuration too, with some differences.
agreement with the one obtained by our Monte Carlo simuin the first four-chain regime of the phase diagram, the dis-
lations with a difference between them less than 0.3%. tance between the two internal chains is larger than the dis-

We observe the following sequence of transitions as theéance between the internal chains and the external ones, in
density increases: from one-chain structure to the two-chaithe second regime the behavior of the system is the opposite
structure then to the four-chain configuration, back to thewith the distance between internal and external chains larger
three-chain and again to four and then to five-, six-chairthan the one between internal chains. For the other structures
structures etc. Note the remarkable fact that between the twibie interchain distance is always a growing function of the
and three chain configurations there is a small intermediatdensity. It is evident that only the first transition is continu-
region where a four-chain configuration has a lower energyous with a clear bifurcation.

For all other transitions the number of chains increases only In order to gain some insight on the distribution of the
by one unit, i.,en—n+1. The relative lateral position of the energy in this anisotropic system we present in Fig. 4 the

FIG. 4. The energy per chain @=0 and(a) k=0.01, (b) «
=1, and(c) k=10. The energy is always higher for the external
chains but as the Coulomb limit«€1) is approached the differ-
ence is diminished and the system behaves isotropically.
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10 4 chains In the case of the first density regimes where the four-
" [T chain 2 chains i'i.?chainsi 4chains | 5 chains | 6 chains chain structure is optimal this difference is not large due to
. . : the fact that the internal distance is lesser than the external
08F i i : 5 p k=1 one. On the contrary, the difference is much larger in the
. 4 5 ‘ E second regime of the four-chain structure. Another interest-
° RITASY : ! : ; P o
T 06l | Neo o o | ; ing observation is that as we approach the limit of Coulomb
L i i:; i-.....-:- "“i interactions (<1) the energy difference tends to vanish and
) . \” L T asens the system behaves isotropically.
04T E z::sa y - :gx:x : E
L] : :EO.SZ \\ : E
o2l | Yo ;\\\M : B. Structural transitions
L ] 1 ]
Lo T We have seen that by increasing the density, the system
330 ) PR & R . N AR changes its configuration, in other words it undergoes a
c 1 2 3 4 5 6 7 “structural transition.” It is a natural question to study the
n order of these transitions. For this purpose the derivative of

the energy with respect to the density was calculated which

FIG. 5. The derivative of the energy with respect to the densityis shown in Fig. 5 for the case af=1. For every value of
for k=1. Only the transition from one to two wires is continuous the inverse screening length only the transition between the
(second ordgrthe rest are first order. one- and the two-chain configurations is continuous and all
energy per particle for each chain. This is computed by conthe others are discontinuous. This conclusion agrees with the
results of Fig. 3, where discontinuous changes of the lateral

sidering a particle at a particular chain and taking into ac, osition of the particles correspond to first-order transitions
count all the interactions with the rest of the particles. Th " . . Y-Sty :
P he transition -2 is a zig-zag transition (Fig. 6. The

cases of interest are the configurations for which it is pos- ition 24 th h . t i f h
sible to distinguish internal from external chains and may pgransition 2-4 occurs through a zig-zag transition of eac

related to the difference in the melting behavior which isOf the two chains accompanied by a shiftaf along the

discussed in Sec. V. The interesting observation is that iff1@n: Which makes it a discontinuous transitiéig. 6). In

every case the energy per particle is larger in the extern&?_”nc'ple’ these kind qf almost Zlg-zag transitions are pos-
chain than the internal ones sible for three-, four-, five-, and six-chains to result into six-,

This asymmetry reflects the fact that for each particle re€ight-, ten-, and twelve-chain structures, respectively. Actu-
Ily, these were observed during the numerical simulations,

siding in an external chain the gain in energy due to the? iy § I value of but th
confining potential is higher than the difference in the Cou-ESPecially for very small value o, but they represent meta-

lomb energy due to the lack of symmetric neighboringStable states and are not the most energetically favored con-

chains, as compared to a particle residing in an internafigurations.

chain. E.g., for a three-chain system where the middle chain
is the zeroth and the external ones are denoted-fhyand

— 1, we have for the energy of two particles: C. Limit of short-range interaction and large density

In order to make the connection with the regime where
E-17Eo=Econt =17 Ecoulomb+1,-1~ Ecoulomp+1,0>0, the hard-core potential can be used as a working hypothesis,
we investigate the limik <a. It can be shown that the varia-
where Ecqyiomna, g denotes the Coulomb energy of a particle tion of the distances between chains can be neglected and in
residing in chaina interacting with the particles in chajd  the limit where mw3W?<q?/(ae) (W is the width of the
andEgqnt, denotes its confining energy. strip), following the spirit of the hydrodynamic consideration

Mechanism of some structural transitions

(a) 12 zig-zag

FIG. 6. The mechanism of the structural tran-
sitions 1—2 chains and 24 chains.

(b) 2—4 zig-zag + shift

K B

‘?‘? e o -. - . .
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of Koulakov and ShklovsKif the difference in the distance o
between chains at the borded$+W/2) and at the center I S N TR
d(0) follows the relation 08k
) ) 0.6}
wherel is the number of chains ard}=\/d’+ a%/4. é
This can be estimated by considering the presstein 0.4} 5. =05
the crystal exercised by the external potential. Adopting a ”e -
method similar to Refs. 26 and 27, 02}
2 @ =1
mwo W 2 0.0 1 1 1 1
oyy==S(0) 5= | 7 ~¥V?|, ©) ”
where 3/4<S(o)=<1 ando is the Poisson ratio, we assume a 10
uniform densityn and S(o)~1. Then, balancing the force o
by the pressure and the interaction forces we (getthis § 08 .
estimate we keep the dimensions for clarity 8 os} @,
Ao =15
2dg? ndmo} 04F 7 Ao e
——————exp(— Vd?+a%/4/n)~ W2/4—y?),
e(d?+a?/4) P : 2 y9 0.2F - =1
(10) 0.0 / L L 1 1
from this relation 1.6
1.4}
do(y)= Vd(Y)2+a2/4 1oL
4 q 2 80 1.0 ""'":- .................
~N\In , (1) 08l 7 e T
emaZn(W2/4—y?)(d(y)2+a2/4) 3 ol @ T o5
subtracting the values afy at W—a/2 and 0 we obtain Eg. 04l / (h) ne -
(8). ozl _
Therefore in the case of very short-range interactoin 0'0 oy . ._1 .
<d(0). Then one can adopt the hard-core potential and es- 0.0 0.2 04 ~ 06 0.8 1.0

sentially the total energy becomes the sum of the energy of
each particle due to the confining potential. The average en-

ergy per unit lengtrE/L then reads FIG. 7. The normal modes of the system in the of&; two-

(b), and three<{c) chain configurations. The optical and acoustical
1 W2 branches correspond to motion in the confined and unconfined di-
E/L~ ﬂmwgﬁ. (12 rections, respectively. The wavelength is in unitsméé, wherea is
the length of the unit cell. The letters indicate the different motions
as presented in Fig. 9.
IV. NORMAL MODES

A. Normal modes in the absence of an external magnetic field

We now turn to the calculation of the normal modes of the
system, following the standard harmonic approximation e fig = 0.8
and exploiting the translational invariance of the system 15}
along thex direction. The number of chains determines the
number of particles in each unit cell and therefore the num- 12}
ber of degrees of freedom per unit cell. Sd i§ the number
of chains there will be P branches for the normal mode
dispersion curved: acoustical branches as well bgptical
ones. Note that for ordinary bidimensional crystals there are
2 acoustical branches and 22 optical branches, if is the
number of atomic species in the unit cell. We present the
results for the one-, two-, and three-chain structures in Fig. 7.
Note that for the one-chain structure the unit cell consists of
a single particle, i.e,=1, and therefore one expects only a 0.0
single acoustical branch and no optical branch. The appear- ’ | k
ance of the optical branch is a consequence of the presence
of the confining potential in thg direction. Note that fok FIG. 8. The phonon spectrum at the softening of the optical
—0, wop=wg, Which corresponds to the center-of-massmode at the structural transition from one to two chains.

®/®

06

03}
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motion of the system in the confining potential.

In order to find the eigenmodes we solve the system of

equations

(028, —Dup.ij)Qp;=0, (13

where Qg ; is the displacement of the particlefrom its
equilibrium position in thed direction, (@, B)=(X,Y), Sup,ij

is a unit matrix andD 4 j; is the dynamical matrix define
by

1 :
Daﬂ,ij :E EV ¢a,,8( V)eilyqaa (14)

wherew is an integer assigned to each unit cell and the force

constants are

exp(— k\V(X—x')?+(y—y')?)
ViX—=x")2+(y—y')?

, v#0,
(15

d)a,ﬁ( V) = &a&lB

evaluated ax—x’' e{av,a(v+1/2)}, y—y'= relevant in-
terchain distance, and

bop(v=0)=— ;0 bop(V). (16)

All the frequencies are measured in unit@§/\2. In Ap-

PHYSICAL REVIEW B 69, 045324 (2004

wopt(k)=[1— —In(1—e" “/ne)
—«/n 12
e e |~
e —[f%? . (19
Ne 1—e /M| ©

which gives explicitly the dependence of the modes on the

¢ density and the screening parameter. In the limdt>1,

- n
wac(K)=e" wl2ne ¢ \/;3 | k| a,

(19
~ T2
—x e
wopi(K)=1—€ ’”eﬂkzaz, (20)
while in the opposite limitc/ng<1,
~ 1/2
3 n ~
ad(k)=| 5 +In f” nk|a, (21)
F] 1/2
wopt(k)=[l— 1+In f) ﬁngaZ] . (22)

There is a remarkable difference in the optical branch of
the spectrum between the single-chain and the two- and
three-chain structures. In the first case the frequency of the
optical branch decreases as the wave nunkbercreases,
while for the two- and three-chain structures the optical fre-

pendix B we present for completeness the expressions for th,ency increases. In the single-chain configuration the opti-
matrix, where the modes for the three-chain structure wergal mode corresponds to oscillations of the particles in the

calculated as an example.

confined directionsee, e.g., Fig. ®)], which reduces the

The main feature is the softening of the optical mode ofCoulomb repulsive energy. For the two-chain configuration

the one-chain structure at the valuesngfand « where the
structural transition is observedig-zag transition accom-
panied by a hardening of the acoustical brariEig. 8),

the normal modes are shown in Fig$c)3-9(g). In fact this
branch is nothing else than a transverse acoustical mode,
while the acoustical branch corresponds to longitudinal

which confirms that 2+2 is a continuous transition as as- motion*?°

serted before.

Studying the eigenvectors of the dynamical matrix it iSg_Normal modes in the presence of an external magnetic field
easy to recognize that the optical modes are identified with

the motion in the direction of confinemeny (direction,

while the acoustical modes are identified with the motion in

the unconfined direction.

The eigenfrequencies for the single chain are given b)}

wac= /A, for the acoustical branch and,,=1+A, for
the optical branch, wher&,; andA, are defined in Appendix
B

In the limit of small wavenumberk, the summations can

be done analytically and we obtain

_ K e*K/’I:‘]e
- In(l—e""”e) 4+
Ne1—e “/Ne

—in 1/2
K2 e kIng ‘|

wac(K)=

+ = F]eS/Z| k|a,

2n; (1—e *Me)?

7

We now consider the effect of applying a constant mag-
netic field B in the z direction. For quantum patrticles, the
magnetic field can localize the charged patrticles into cyclo-
ron orbits, therefore aiding the formation of a Wigner crystal
in the presence of a magnetic field. It is kndWthat in a
classical system an external magnetic field does not alter the
statistical properties of the system and consequently the
structural properties and the melting temperature are insen-
sitive to the magnetic field strength. But on the other hand
the character of motion of the particles is altered significantly
when the cyclotron frequency is larger than the eigenfre-
quencies of the system. The magnetophonon spectrum of an
infinite 2D Wigner crystal in a magnetic field was obtained in
Refs. 31 and 21. In the presenceRfthe system of equa-
tions is modified to

(0%8,pij = Dup,ij tiow,p5;)Qp=0, (23
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where ¢z is the Levi-Civita tensor and.=qgB/mc is the
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FIG. 9. The motion of the particles for the
one-, two-, and three-chain structures which cor-
responds to the different eigenfrequencies.

whereA; and A, are given in Appendix B. For very large

cyclotron frequency. In Fig. 10 we show some typical dis-field when o.>{A;,A,,1} the gap between the optical
persion curves for the one- and three-chain structures fdpranches and the acoustical ones approaehQeshe optical
different values ofw,. It is interesting to note how the op- frequency reflects the cyclotron motion of the system which
tical modes couple with the magnetic field, the optical fre-suppresses any soft excitation. As before, it is interesting to
quencies follow the cyclotron frequency and for very high study the normal modes at the critical density of the transi-

field strength there is no significant difference betwegp;

tion from the one-chain to the two-chain structu(egsy. 11).

and w.. The acoustical frequencies, on the other hand, de'Ve observe that there is always softening at the same den-

crease with the magnetic-field strength. For the single chaifity. independently of the strength of the magnetic-field, but
with a main difference that for zero magnetic-field strength

the eigenfrequencies are modified to

o(K)={3(1+A+ A+ 0d) = [(1+A;+ A+ w2)?

—4A;(1+Ay) 132
sof ) )
15}
o

g8 8
~ 1.0} x=1 —mc=1 ~é
8 fi=0.5 - mc=5

05}

0.0 —L

the modes which soften is the optical one, while when the

magnetic-field strength is nonzero, the acoustic mode is the

one that softens. The magnetic field induces a coupling be-

tween the acoustic and the optical modes and there is an

85

5.0

FIG. 10. Typical dispersion
curves for the onefa) and three-
(b) chain structures for two differ-
ent magnetic-field values.
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___________________________ state the potential energy of the system increases practically
5.0F T linearly with temperature and then exhibits a very fast in-
2gT fle=08946 T crease in a small critical temperature range after which it

Y e i starts to increase linearly again but now with a slightly larger
S slope. In the latter region the system is in the disordéred
§ [T liquid) phase. The fast increase of the potential energy is
C] 10 4{; indicative of the melting of the WC. To find the critical tem-
Tl ot L (00;1' peratures we studied, following the spirit of Ref. 32, the
I - =5 modified Lindemann parameter,=(u?)/d?, where(u?) is
T Ty defined by the difference in the mean-square displacements
0.0 e tietutaet R of neighboring particles from their equilibrium sit§§ and
0.0 0.2 0.4 K 0.6 0.8 1.0 d, is the relevant interparticle distance as we discuss below.

The quantity(u?) can be written as

FIG. 11. The magnetic-field dependence of the softening of the
phonon mode at the structural transition from one to two chains.

o _ E 2 [(Fi=To) = (rj=rop1?), (25
anticrossing between the two branches. Although these find- =1 Npp =
ings confirm the previous assertion that the presencB of
does not alter the structural properties of the system it alsawvhere() means the average over the MC stepss the total
reveals the differencesoftening of the acoustic mode at the number of particles in our simulation unit cell and the index
same density, influence on the gap between optical anfddenotes théN,, nearest neighbors of particieln order to
acoustical branches and on eigenfrequencies within eaalflescribe more accurately the difference between the two di-

branch, which are induced by the magnetic field. rections, we studied separatély;) and(u;) as functions of
temperature. For the melting along tkelirection, the dis-
V. MELTING tanced, is the interparticle distanca introduced in Sec. |,
while for melting along they directiond, is the interchain
A. General discussion and results distance which is a function of the density.3*3*

In this section we study the melting of the WC by Monte At low temperatures, the mean-square relative displace-
Carlo(MC) simulations. After the ground-state configuration ments slowly increases linearly with temperature as a conse-
was achieved as explained in Sec. Il, the system was heatggience of harmonic oscillations of the particles about their
up by steps of siza T, typically AT=5x10 4, and equili- equilibrium positions(see Fig. 14 From Fig. 14 we note
brated to this new temperature during2QC® MC steps. In  clearly that this linear increase is larger in the unconfined
Fig. 12 we show typical trajectories of particles as they ariselirection than in the confined direction. In some critical tem-
from our MC simulation. It is evident that there is a different perature region{uZ) and(uy> start to increase very rapidly
behavior of the system in theand they directions as may be which is the consequence of the fact that the particles have
expected by the anisotropy in the two directions. In order taattained sufficient thermal energy that they can jump be-
quantify the observations, we studied first the potential entween different crystallographic positions. According to the
ergy as a function of temperatug€ig. 13. In the crystalline  modified Lindemann criteriotMLC), whenL, reaches the

T/T,=0.001 T/T,=0.006 T/T,=0.014

fi =3.2, k=0.01 =32, k=0.01 =32 k=001

i
150« - Ta e A 15im & s W W 15 M W W W

T R PR LA A o
e e, B R "I A
ABle =« e |-15K 4 % e wm | 15k W o
15 7=39 k=1| 45 i=39 k=1 4¢ il =39, k=1
s e e . . - o e oW W ﬁﬁ\%*% FIG. 12. Particle trajectories for 310
o0l -~ T ° = oo™ * m e 0.0 *d&*‘m* MC steps for three different temperatures and
e e e e . PN U T N e three different values of the density a=0.01,
D A P P I I 1, and 3.
15 =55 k=3| 45 il =55 k=3
TS S S T ST E oA W e W e o N
- - - - - - - e A e e W W W
>’0'0. e e e s o . o'opuw»#ﬁdu
L T wh e e R
1.5 -1.5
5 6 7 8 9 10 5 6 7 8 9 10
X X
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FIG. 13. The energy per particle as a function of temperature for

the four-chain structure withk=1 andn,=3.9. There is a fast
increase of the energy at the melting temperature.

(semiempirical critical value 0.1 the system melts. This cri-
terion was used to define the melting temperafljje

From the corresponding analysis two different melting
temperature§, andT, can be assigned. The results are sum-
marized in the phase diagram of Figs.(d515c) for «

=0.01, 1, and 3, respectively. There are several interesting

features in these phase diagrams.

(a) The nearly Coulomb systenx&0.01) has a melting

temperature which is on average 15-20% higher than for the

screened Coulomb interparticle interaction with 1, which

has on its turn an average melting temperature about 15%

higher than the screened Coulomb system with3. There-

fore, we conclude that the effect of screening is to reduce the

melting temperatures;

(b) A reentrantbehavior is observed as a function of den-
sity, the minima of the melting temperatures occur at the
values of the density where the structural phase transitions

were predictedsee Fig. 2;

0.20 ,
K=1 i
2] & |
c ne=1.6 i
2 0.15F ] s
] |
3 [T/
g o10f Lo
o I 0 ;\
0>> o g ux2 > ;i
= 0.05} » foAT
© <y ®> e
& d
0.00 L armmgemmRm==R=RTRVRS RTRTa
0 2 4 6 8 10 12 14 16 18
10° T/T,

FIG. 14. The mean-square relative displacementscferl, N, \ there
=1.6 in the case of the two-chain configuration. The dashed horiwhich the system melts first in the unconfined direction

zontal line corresponds to the modified Lindemann crite(idhC)
in the unconfined direction, while the dotted line corresponds to th&embles the findings of Ref. 15 in the regime termed as

MLC in the confined direction.
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50 | J,- 3 / K=0-01
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FIG. 15. Melting temperature as a function of density f@):
k=0.01,(b) k=1, and(c) k=3. The insets ina) and(b) show an
enlargement of the four-chain region, which is located between the

two- and three-chain phases.

(c) There is a regime close to each structural transition
point where the system fsustrated in the sense that it fluc-
tuates between the two structures. In this regime, which we
term as frustration regime, the system makes continuous
transitions from one metastable state to the other which
strongly reduces the melting temperature;

(d) For k=1 andk=3, there is a region in density for
while it is not melted in the confined one. This regime re-

locked floating solidFor the Coulomb limit there is no evi-
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FIG. 16. Particle trajectories for:810" MC steps which quali-
tatively illustrates the different melting behavior at the boundaries
due to the confining potential for=1.

dence of anisotropic melting within the error bars of our
simulation. The system behaves more isotropic; ) _
(e) The first four-chain regimgsee insets of Figs. 18— _ FIG. 1E_3. The_ behavior of_ the Llndem_a_nn parameter for the
15(c)] is unstable with respect to temperature fluctuations a§|ngle-ch§|n regime at four .dllf'ferent densmes.. It shows how the.
it is reflected in the relative low melting temperature. In this!inear regime at higher densities becomes sublinear at lower densi-
region, melting occurs first in the confined direction as al'®®
consequence of the particular structural properties—the dis-
tance between the two internal chains is larger than the didng starts from the edges as observed in the experiment of
tance between an internal chain and the adjacent externRef. 3 with electrons on liquid helium. The number of fila-
one—which makes the system unstable inytwrection. In. ments that were observed in the experiment wa20; we
the rest of the diagram there is evidence that the meltingyave simulated the trajectories of some multichain structures
either starts from the unconfined directitng., it is clear in  and the results are presented in Fig. 16. In this picture it is
the single chain and in the low-density limit of the two clear that the most external chains are already melted, while
chaing or the system melts simultaneously in both direc-the internal ones are still ordered. Edge melting, has also
tions; and been demonstrated in the presence of a strong magnetic field

(f) The single-chain structure shows a relatively 1argej, pef 35 using Hartree-Fock calculations in a two-
meltmgt:emtperagllfr:e af gbtwfm;c}j by. thf" M#C andtgesirveaimensional Wigner crystal with edges. With the aid of many
g]oosrtioane?jntlc??llwe fo?lo?/vlilngy sc;ctio(:\ single-chain 1s terelore, ymerical simulations of multichain systems at different den-

Furthermore, note that the MLC only takes into accountsmetS we ﬁbsetrr:/ec:j that.tth!s k:nd of meltlr;gt |strp1)rese;pt 'Tc?ur
the displacement of the particles relative to the position ofystem when the densily 1S close enough fo the critical den-

their neighbors and consequently is only a measure of théity of a structural transition. Close to the structural transi-

local order of the system. tion many metastable states appear with a different number
Another natural question that arises is whether there i9f particles per chain, that is, in the most external chains

chains in the multichain structures or in other words if melt-Particles at the most external chains have larger displace-
ments from their equilibrium positions in order to attain the

stability of the structure. Furthermore, we calculated the av-
.- erage root-mean-square displacements of the particles from
their equilibrium position chain by chain and akaf) chain

0.020 - — s, internal chains
---- s external chains .-~

0.015L x=1 by chain and we actually noted that these quantities are
| ﬁ-41 slightly larger for external chains at temperatures below the
e critical one. In Fig. 17 we present the temperature depen-

dence of the standard deviati®d=((u,—(uy))?) and sZ

0.010F .7 7 ... s, internal chains
Y =((uy—(uy))?) for the external and internal chains in the

e | chai ) . . o
8, external ¢ aTS four-chain structure. It is evident that the position of the

0005+ -—-’:T.'.‘.'.‘I.’-'-’-'-‘-.'—":"—':T'- particles at the edges fluctuates substantially more than the

Displacements

T particles at the interior. We can conjecture that, according to
0.000 .--—--"';"""", L this physical picture, melting can start from the edges. How-
2 4 6 8 10 ever, for up to the six-chain configuration for each chain the

TT o X 10° quantities(uZ) reached the critical value, approximately, all

at the same temperature. Probably, going to a larger number
FIG. 17. Temperature dependence of the displacements in botf filaments one can well appreciate a different melting tem-
the unconfined and confined directions for external and internaperature for external and internal chains. Finally, the chain
chains in the four-chain structure. configuration as well as the melting which starts from the

045324-11



PIACENTE, SCHWEIGERT, BETOURAS, AND PEETERS PHYSICAL REVIEWEB, 045324 (2004

35 3.2
3of
25|
20}
15}
10]
o5}
00l

K (a) o first peak
28 o second peak

g(x)

10
= — TIT,=0.001
8} A=05 .. T/T=0.005
--- TT=0010

o first peak
(b) o second peak

9(x)

K=1

16
14 | 1@1 — TIT°=0.001
2 =08 ... T/T=0.005
[ --- TIT,=0.010
L] S I I TIT,=0.020
X 8]
()]
6}
41 e first peak
ol | 1§ o second peak
& Al A w A 5;‘ AW s
0 EL 5 . 1] \%
0 2 4 6 8 10 K=1
X A =0.8
FIG. 19. The pair-correlation function at different temperatures, <

for three different densities, for the single-chain configuration.

a(

direction of the chains is supported also by molecular dy-
namics simulations of the flow of electrons in Q1D
channels®

B. Melting of the single chain

In Figs. 15a)—15c) we observe a rather high melting
temperature in case of the one-chain structure. The origin of FIG. 20. The height of the first and second peaks of the pair-
this behavior can be traced back to the fact that the MLGCeorrelation function for the single chain as a function of temperature
takes into account a larger contribution from jumps of par-for three different densities.The lines are the best fits with the func-
ticles between crystallographic positions which for thetion a(T/Ty) %
single-chain structure occurs only at extremely high tempera-
ture. For the single-chain case the jumps can only occuin which there is only a gradual increase (i) which is
along the chain which requires a larger energy than jumps ofery different from the multichain casesee Fig. 14 Fur-
particles between different chains. thermore,(u?) exhibits a sublinear temperature increase.

To have a better insight we investigated the behavior of This calls for the use of other possible criteria in order to
L, for different densitiegFig. 18. We note that in the low- clarify the situation. On the other hand, if the density is
density limit[see Fig. 183], L, ~0.1 is reached in a region relatively high(see Fig. 18 a fast increase is observed sig-
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60 F o pair correlation function criterion criterion can be formulated using the pair-correlation func-
| —e— modified Lindemann criterion tion. If we consider the ratio of the height of the fifth peak in
50| '\ k=1 g(x) above 1 Hs—1) to the height of the first peak above 1
I / Py (H,;—1) at those densities where theaximummelting tem-
o 40t ° \\ perature is obtained for the two-, three-, and four-chain struc-
= I 8T tures, melting occurs when
= 30l \ "xo
@ | o As L 1 ~015 (27)
™ 20f * % o Hy—1 ™
I el .
Employing this criteriontermed as pair-correlation function
10r o O criterion or PCFQ we obtain the results of Fig. 21, were we
e present both the relevant temperatures obtained by MLC and
oy, e PCEC
02 03 04 05 06 07 08 09 o - o
N It is worth noticing that this criterion does not work well
n, at temperatures close to the structural transitions. The reason

is that although particles “jump” to new sites in order to
FIG. 21. The melting temperature for the single chain as ob-attain the new positions, the pair-correlation function still
tained from the two complementary criteria. measures correlations at certain distances and, most impor-
tantly, the height of the first peak is substantially reduced
which artificially enhances the ratio E7).
naling a clear melting of the system. The transition from a Thus the value of 15% which works far from the struc-
low temperature linear to sublinear behavior occurstfpr tural transitions is too high for the regime close to the struc-
~0.4. tural transitions. It is therefore evident that the two criteria
To shine light into the posed questions we studied also thean work in a complementary manner.
pair-correlation function at different densities and tempera-

tures, as defined by VI. DISCUSSION AND CONCLUSIONS

L The structural phase transitions and the melting can be
g(x)=— 2 (O[x=(Xi—=x)1), (26)  studied experimentally using parabolically confined colloidal
N® ] particles or dusty plasmas in the case of a screened Coulomb
where in the summation oveX particles in a svstem of interparticle interaction:Anothe{rir_nportant experimgnFaI Sys-
. VeR p ys tem are electrons floating on liquid helium, where it is pos-
lengthL, the diagonal termsi € ) are excluded. The results sible to achieve relatively narrow Q1D channels on very

are reported _in Fig. 19. .It is rather evident that the melt_ing table suspended helium films over structured substfates.
';emp?rr]atL,JvrleLés lsubs(;anttlallg ;stmaller t?anﬂ:he or?te_ obttalne ssuming a semicircular profile of the liquid surface across
rom the - In-order o better guan ify € meing 1em- o channels then the confining potential is parabolic near the
perature for the one-chain structure we investigated th%ottom with wo=(eE*/mR) (Ref. 38, whereE* is the ef

0~ | : ) 1 -

height of the first and second peaks of the palr—correlatloqective holding electric field in the case of the substrate and

function as function of temperatufsee Fig. 2Din order to . : .y ) . .
: . Ris the radius of the semicircular profile. Assuming a radius
look for a structure or an anomalous jurtgs found in Ref. : *
of ~5 um, a typical value forET~10 kV/cm then wg

37) that could identify the critical temperature. As is appar-—"_ 7 . N .
ent from Fig. 20 we do not find any abrupt changes. The firsf" 10" Hz. This in turn produces @,~60 K. The melting

and second peaks as a function of temperature can be fittdgMPeratures which have been obtained in the present work
by gi=a(T/T,) #, wherei ={1 or 2! denotes the peaisee are of the order of 10°x T, which results in a melting tem-
the cI:urves inOFig.' 20 perature~0.5—1 K, a temperature range which is routinely

The values of &,B) are (2.922, 0.27# for i=1 and achieved in such experiments. Assuming an interelectron dis-

(1.895, 0.218 for =2 whenTi,= 0.2, (9.320, 0.433 for i Eance of=0.1-1 um leads to a dimensionless linear density

i tn 3. e 02 Sk s e of e ol
0.473 for i=1 and(11.552, 0.501for i=2 whenn,=0.8 g e 9 P

d in each case th is less than 1% work.
and in each case the error Is fess than 17. Another issue connected with melting, which deserves in-
From the study of the pair-correlation function we con-

= » terest, is the appearance of topological defects so that a
clude that at moderaten{<0.2 for k=1) densities, the KTHNY (Ref. 18 scenario of melting is possible. In Refs.
chain is melted at arbitrar”y weak temperature. For hlgher26, 32, 39 this question was considered in the case of a
densities the chain retains correlations up to higher values Qfircular confining potential with a finite number of particles.
the temperature but these values are less than those obtaingtthe case of short-range interactions the defects are pushed
by the MLC. B to the surface due to the large price for elastic deformations,

We noticed from the high-density regima,>1), where  while in the Coulomb case shear and Young moduli are rela-
we reach the multichain structure, that another semiempiricaively small2®
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Moreover, because of the incommensurability of the circlefore the system melts along the chain direction. Furthermore,
with the hexagonal Wigner crystal the defects do not resideve found thafT ,, shows a reentrant behavior as a function of
exactly at the borders but in a zone few lattice spacings inthe density of the system and a regime of frustration around
side the crystal. Therefore, three different regimes with dif-each point of structural transition can be identified. In the
ferent melting temperatures can be detedfeth our case case of the single-chain structure, we device a new criterion
there is no such incommensurability and the edges can a order to take into account the correlations at different tem-
commodate the defects easily. This has also been discusspdratures. The present study is suitable to describe colloidal
in the case of a quantum Hall bar by Nazarov in Ref. 40. particles, dusty plasmas and electrons floating on liquid he-

In conclusion, we investigated the structural, dynamicalium.
properties, and melting of a classical quasi-1D system of
particles interacting through a Yukawa-type potential in the
range from Coulomb to very short-range interaction in the
case where the confinement is modeled by an external para- Stimulating discussions and collaboration with N. Studart
bolic potential. The structural transitions are of fifstima-  and H. Carmona are gratefully acknowledged. This work was
rily) and second orders. The normal modes of the systeraupported in part by the European Community’s Human Po-
were calculated in the presence of a perpendicular magnettential Program under Contract No. HPRN-CT-2000-00157
field. In certain regions of the parameter space, there is evi-Surface Electrons,” the Flemish Science Foundation
dence that melting starts first in the unconfined direction be(FWO-VI), IUAP-VI, and the GOA.
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APPENDIX A

The expressions for the energy in the configurations beyond the two-chain structure are presented below. All the distances
are in units of the interchain distaneebetween adjacent particles.
For the three-chain structure

Ne < “exp(—3k\(m—1/2)2+c2/n,)
Ey=— exp(—3mx/n /mﬂL

373 & O e Z V(m—1/2)2+c3

2ne i exp(— 3x\/m2+4c2/n,) 60_§+ﬁeexp(—6c3:</ﬁe)
m=1 Jm?+4c3) nZ 18c;

, (A1)

where the intrachain distan@g is a variational parameter.
For the four-chain structure

exp( —4x\(m—1/2)2+ (c4— f4)%/Ng)

i . +ﬁe i exp(— 4k \(m?+(cy+ f4)%/ng)
m= (M—1/2)2+(c,—f4)? 4 m=1 Vm?+(cy+1,)?
n § exp( — 4k+/(m—1/2)%+4f3/n,) ﬁe “ exp(—4k\(m—1/2°+4ci/n,) 8c3

e
o o —+8f /n
8 m=1 V(m—1/2)%+4f} i 2= J(m—1/2)2+4c2 2ot

exp(—4xkm/ng) ﬁ
m=1 m

e

Ne exf —4(cy+ f4) k/Ng]
J’_ —
8 Cyt Ty

: (A2)

wherec, is the distance of an inner chain afglis the distance of an outer chain from the middle of the structure. These
distances are two variational parameters which have to be optimized numerically.
For the five-chain structure

10c 10f2 ',
Es=—pot =+ =
° n2 n2 5 E:

exp(— 5Km/ne) 4n,

t o5 2

exp(—5x\(m—1/2)%+ (cs— f5)?/ny)
V(m=1/2)%+(cs—f5)*

@ % exp(—5xym? +05/ne) 2ne exp(—5Csx/Ne) 4ne z exp(— 5k \(Mm—1/2)%+ (cs+ f5)2/Ne)
25 m=1 Jm2+¢c2 3 Cs V(m—1/2)%+ (cs+ f5)?
@ g exp(— 5K\/m2+4c5/ne) Ne exp(—10c5k/Ne) 4ne i exp(— 5k +(m—1/2)%+ f&/n,)

25 n=1 \/m2+4C 50 Cg \/(m—1/2)2+f§
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2ne§°°: exp(— 5K\/m2+4f52)/ne) neexp( — 10f5;</ne) (A3)
Jm?+4f2 50fs

with the variational parameters; and f5, which are the distance of an inner chain, and outer chain, respectively, from the
middle of the structure.

For the six-chain structure

12f2 1293 12h3 n, < exp—6xm/6)
== t = T = +€2—
ng ng ng m=1 m

+’ﬁe i exp( — 6x+(m—1/2)%+4hZ/n,) ne i exp(— 6k+/(m—1/2)2+4f3/n,)
J(m—1/2)2+4h2 J(m—1/2)2+4h2

+_e§ (exp(—em/(m—1/2)2+4g§/ﬁe)) Ne i exp(— 6« (Mm—1/2)%+ (hg—gg)?/Ne)
V(m—1/2?+4g3 m= V(m=1/2)%+(hs—gs)®

ﬁei exp(— 6k+/(m—1/2)%+ (hg+ fg)2/Ne) E “ exp(—6x\(m—1/2)%+(gs— fg)%/Ne)

| J(M=1/2%+ (he+ fg)2) 9 M1 V(m=1/2)%+(ge—f6)?)
Ei exp(—6x\m?+ (hg—f5)?)/Ng)  Ne exp( —6|hg— fg| x/Ne)
9

+ + =
= JmZ+ (hg—f)? 18 [he—Tél
+E i eX[Z(—GK\Z/mZ-i-(hG-i-g;)z/ﬁe)
9 m=1 Vm=+(hg+ge)
Ne exp[—G(h6+ge);</ﬁe] ﬁ i xp(—6;<\/m2+(ge+f6)2/ﬁe)+ﬁe exd —6(ge+ fg) k/Ne] Ad)
18 (he+9s) m= JmZ+(gg+fg)? 18 (g6t fo) ’

with fg, gg, andhg the three-chain distances from the middle of the crystal, starting from the inner one which are the
variational parameters.

APPENDIX B

We present the matrin?l —D, wherel is the unit matrix and is the dynamical matrix, for the calculation of the normal
modes for the three-chain structure. It reads

w’—A; 0 —Ag 0 —As 0
0 (0?— wd)—A, 0 -A, 0 —Asg
D —A; 0 w’— A, 0 — Az 0 -
0 —A, 0 (w?—wd)—A, 0 —A, ’
—As 0 —A; 0 w’—A, 0
0 —As 0 -A, 0 (02— 03)— A,

where the parameters are

- 1 - - - ~
Ar=n3> Fexp(—3j kINg)[ 2+ 6j k/ne+9j2k?M2][1— cogkmj)],
=1 27|

~ 1 ~ ~ ~
A,= —ngz ——eXp(—3j«/ng)(2+3jk/ng)[1—cogkj)],
=1 27j3
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oo

- 1 - ~
A= ngjzl 27Wexp( —3k\(j + 1722+ c2ng)[codkm(j +1/2)—1](j +1/2)2

9k\(j+1/27+cZ 9w (j+1/2%+c2] 3k \(j+1/2)%+c?
X = + = +3|—| 1+ =

)[(j +1/2)2+cf],
Ne ng

Ne

[

5 1 - ~
A,=nd exp( —3x+/(j+ 1/2)2+ c2in,) [cos K (j+ 1/2)) — 1]c2
4 JEl TS T A k(] + 1722+ c3ing) [coskm(j +1/2) — 1]c5
Ik(j+12%4+c2 9k (j+1/2)2+c2 3k/(j + 1/2)%+ c2
o SNUH 2T | 9L ~2) sl gl [ VU2 C [+ 122+,
ne ne e
e 1 - ~ 9k\j?+4c3 9k?(j%+4cd)
Ac=nd> — —— exp —3kyj2+4c?n)[cogkmj)—1 - + — +3](i2+4c?
5 JEl A P —3k\] ol cogkmj) ]H : = (j2+4c))
3kyj?+4cs
—(1+¥ (j2+4cd) |,
e

Ag=nS>, —
¢S 27124 4c]

(1 3kj2+4c3
|1+ —

exp( —3k\/j2+4cs/ng)[cogkmj)—1]

3

9xk\j2+4c  9xk¥(j2+4cd) )
= + = +3/4
n

e ne

= (j2+4cj)

e

wherek=ak/ is the dimensionless wave number.

The modes for the single chain are obtained by the top left part of the nmi@tixwhich forms a 2<2 submatrix and
involves the elementd,; andA, which have exactly the same form with the substitutif8— n,.

Similarly, the modes for the two-chain structure can be obtained by & Submatrix which is included in the top left part
of matrix (B1) and involves the elements;, A,, andA; with the substitutiomy/3—ng/2.
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