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Generic properties of a quasi-one-dimensional classical Wigner crystal
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We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged
particles, interacting through a screened Coulomb potential. The ground-state energy was calculated and,
depending on the density and the screening length, the system crystallizes in a number of chains. As a function
of the density~or the confining potential!, the ground state configurations and the structural transitions between
them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram
at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes
of the Wigner crystal and the magnetophonons when an external constant magnetic fieldB is applied. At finite
temperature the melting of the system was studied via Monte Carlo simulations using themodified Lindemann
criterion ~MLC!. The melting temperature as a function of the density was obtained for different screening
parameters. Reentrant melting as a function of the density was found as well as evidence of directional
dependent melting. The single-chain regime exhibits anomalous melting temperatures according to the MLC
and as a check we study the pair-correlation function at different densities and different temperatures, which
allowed us to formulate a different melting criterion. Possible connection with recent theoretical and experi-
mental results are discussed and experiments are proposed.
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I. INTRODUCTION

Recently there has been a great deal of interest in m
scopic systems consisting of interacting particles in low
mensions or confined geometries. A class of quantum an
tropic systems exhibiting ‘‘stripe’’ behavior appears in t
quantum Hall effect,1 in oxide manganites, and in high-Tc
superconductors,2 where electronic strong correlations are r
sponsible for the formation of these inhomogeneous pha
Another class of confined quasi-one-dimensional~Q1D! ge-
ometries appears in many diverse fields of research and s
typical and important examples from the experimental po
of view are: electrons on liquid Helium,3,4 microfluidic
devices,5 colloidal suspensions,6 and confined dusty plasma7

A major phenomenon which is expected to occur
charged particles interacting via a Coulomb or screened C
lomb potential is Wigner crystallization~WC! ~Ref. 8! at low
enough temperatures and densities when the potential en
overwhelms the kinetic energy. Indeed, evidence of suc
type of transition was found very recently3 in experiments on
electrons on the surface of liquid Helium, where the el
trons were confined by metallic gates and exhibited dyna
cal ordering in the form of filaments. This particular expe
ment posed many interesting questions regarding the na
of the transition to WC, its density dependence, and the m
ing. Furthermore, the considered system has been prop
as a possible step towards the realization of a quantum c
puter with electrons floating on liquid Helium.9

In this paper, as a first step towards the understandin
the behavior of these systems, we start with a tw
dimensional system consisting of an infinite number
charged particles and we impose a parabolic confining po
tial in one direction. The particles interact with a Yukaw
type potential where the screening length is an external
rameter. Physically, it can be adjusted, e.g., by the g
voltage that confines the electrons. The combination of
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interaction among particles and the external potential le
to a rich structural phase diagram as a function of the scre
ing lengthl and the densityn of the system. The structura
units ~at temperatureT50 K) are parallel chains of particle
the number of which depends on the values ofl andn. The
transition from one configuration to the other can be obtain
via a first- or a second-order transition.

Before proceeding further, we should comment on
possibility of two-dimensional crystalline order. Accordin
to the Mermin-Wagner theorem10 there is no true long-range
crystalline order in two dimensions. However, this theore
is only strictly valid when the potential falls off faster tha
1/r and in the thermodynamic limit. When the same arg
ments of the theorem are applied to a large but finite syst
no inconsistencies arise from the assumption of crystal
order. Thus any system that can be studied in laboratory o
computer simulations can exhibit crystalline order.11 On the
other hand, short-range order is expected to form even in
thermodynamic limit.

In a related work12 which discussed the temperatu
equilibration of a one-dimensional Coulomb chain, two d
ferent equilibration temperatures were assigned (T' andTuu),
reflecting the different behavior of the modes due to
strong confinement.

The WC in strictly one-dimensional and in the quantu
regime was studied by Schultz.13 He found that for arbitrarily
weak Coulomb interaction the density correlations at wa
vector 4kF decay extremely slowly@the most slowly decay
term is}exp(2cAln x)].

Other remarkable work on the quantum transport and p
ning in the presence of weak disorder, where it was sho
that quantum fluctuations soften the pinning barrier a
charge transfer occurs due to thermally assisted tunnelin
described in Ref. 14.

In addition to the structural properties, it is instructive
study the normal modes of these kind of anisotropic syste
©2004 The American Physical Society24-1
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There are optical and acoustical branches and their numb
equal to the number of chains. The acoustical modes co
spond to motion along the unconfined direction and the
tical ones to motion along the confined direction. There
softening of an optical phonon at those values of the den
for which we have a continuous structural transition. We a
study the collective excitations in the presence of a cons
magnetic field perpendicular to the plane of the syste
These modes~magnetophonons! can be directly detected
experimentally.15,16

Another important aspect of the problem is the melting
the temperature is raised. The mechanisms of melting i
great scientific and technological importance. In infinite 2
systems theory,17 based on unbinding of defects, predicts
two-stage melting where the two stages are continuous.
cent theoretical studies of melting of colloidal crystals in t
presence of a one-dimensional periodic potential18 revealed a
number of novel phases and the possibility of reentrant m
ing. These results depend on the commensurability ratip
5a/dext , wherea is the spacing between the Bragg plan
of the 2D system anddext is the period of the external per
odic potential. This kind of system was realize
experimentally19 in 2D colloids in the presence of two inte
fering laser beams. The present work is complementar
the work of Radzihovsky, Frey, and Nelson18 in the sense
that a single confining potential is considered here, whic
not repeated in space. Therefore it can be viewed as a s
of a focused portion of the infinite 2D system, where we p
attention to only one potential trough neglecting the inter
tion with the rest. With respect to the melting, we found t
following remarkable results:~i! a phase diagram which ex
hibits reentrant melting behavior as a function of the den
where the different configurations are explored,~ii ! a regime
of frustration exists close to the structural transitions, a
~iii ! there is evidence that the system first melts in the
confined direction and subsequently in the direction wher
is confined exhibiting a regime similar to thelocked floating
solid regime found in Ref. 18.

The paper is organized as follows. In Sec. II, we pres
the model and the methods used. In Sec. III, we study
zero-temperature phase diagram and properties of the s
tural transitions. Sec. IV is devoted to the study of the n
mal modes of the system and in the presence of, or with
an external magnetic fieldB. In Sec. V, we study the melting
and analyze furthermore in some details the problem of
single-chain melting.

Finally we discuss the connections with recent expe
mental results and suggest experiments where this beha
can be observed in Sec. VI. A very brief account of some
these results was presented in Ref. 20.

II. MODEL AND METHODS

The system is modeled by an infinite number of clas
cally charged particles with identical chargeq, moving in a
plane with coordinatesrW5(x,y). The particles interac
through a Yukawa potential and an additional parabolic
tential confines the particle motion in they direction. The
Hamiltonian of the system is given by
04532
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H5
q2

e (
iÞ j

exp~2ur i
W2r j

W u/l!

ur i
W2r j

W u
1(

i

1

2
mv0

2yi
2 , ~1!

wherem is the mass of each particle,e is the dielectric con-
stant of the medium particles that are moving in,v0 mea-
sures the strength of the confining potential. The Ham
tonian can be rewritten in a dimensionless form, introduc
the quantitiesr 05(2q/m«v0

2)1/3 as unit of length andE0

5(mv0
2q4/2«2)1/3 as unit of energy. Then it takes the form

H85(
iÞ j

exp~2kurW i82rW j8u!

urW i82rW j8u
1(

i
yi8

2, ~2!

whereH85H/E0 , k5r 0 /l, andrW85rW/r 0. This transforma-
tion is particularly interesting because now the Hamilton
no longer depends on the specifics of the system and
comes only a function of the density and the dimensionl
inverse screening length. The quantities introduced allow
to define a dimensionless temperatureT85T/T0 with T0

5(mv0
2q4/2«2)1/3kB

21 .
For the calculations of the ground-state energy we use

combination of analytical calculations and Monte Ca
simulations with the standard metropolis algorithm. This
cursive algorithm consists in displacing randomly one p
ticle and accepting the new configuration if its energy
lower than the previous one; if the new configuration ha
larger energy the displacements are accepted with probab
d,exp(2DE/T), where d is a random number between
and 1 andDE is the increment in the energy. We have a
lowed the system to approach its equilibrium state at so
temperatureT, after executing 105–106 Monte Carlo steps.
We have used the technique of simulated annealing to re
theT50 equilibrium configuration: first the system has be
heated up and then cooled down to a very low temperat
In the simulations typically 300 particles were used and
order to simulate an infinitely long system periodical boun
ary conditions~Born-Von Karman! were introduced.

III. GROUND-STATE CONFIGURATIONS

A. Phase diagram

The charged particles crystallize in a certain number
chains. Each chain has the same density resulting in a
one-dimensional densityñe . It is then possible to calculate
the energy per particle for each configuration and to ch
the favored one as a function of the parameters of the sys
If a is the separation between two adjacent particles in
same chain, we can define the dimensionless linear den
ñe5 lr 0 /a, wherel is the number of chains.

In the case of multiple chains, in order to have a bet
packing ~or in other words to minimize the interaction en
ergy by maximizing the separation among particles in diff
ent chains!, the chains are staggered with respect to e
other bya/2 in thex direction. In an infinite lattice this will
lead to the hexagonal WC.21 We calculated the energy pe
particle as a function of the density for the first six possib
configurations of the system.
4-2
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FIG. 1. The energy per particle as a functio
of density fork51.
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If the particles crystallize in a single chain, the minimu
energy is obtained when the particles are placed on thy
axis, where the confining potential is zero. In this case
linear density isñe5r 0 /a and thex coordinate of the par-
ticles arexi5 ia, with i 50,61,62, . . . ,6`. The energy
per particle is

E15ñe(
j 51

`
1

j
exp~2k j /ñe!. ~3!

The case of Coulomb interaction is treated using the Ew
summation method so that the summation over long dista
can be done effectively. Following the standa
procedure21–24 we obtain forE1,

E1~k50!5
ñe

2

Ap
lim
x→0

F(
j

2e22p jxF1~ j p/2ñe!

1(
j Þ0

F2„ñe
2~x2 j !2

…1
1

ñe

F2~ ñe
2x2!2

Ap

ñe
2

1

xG ,

~4!

where F1(x)5Ap*x
`dt exp(2t2)1/t, F2(x)

5Ap/xerfc(Ax), and erfc(y)5122/Ap*0
ye2t2dt.

The first summation contains a divergent term atj 50
coming from the lower limit of the integration in the functio
F1(x50). This divergence is remedied if we subtract t
interaction energyEb of the negatively charged particle
with the positive background which also diverges logari
mically in one dimension. In that case we can proceed us
the limit limx→0x21 erf(x)52/Ap:
04532
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DE15E1~k50!2Eb5
ñe

2

Ap
F(

j Þ0
2F1~ j p/2ñe!

1(
j Þ0

F2~ ñe
2 j 2!G2

2

Ap
ñe . ~5!

In the two-chain configuration the particles crystallize in tw
parallel lines separated by a distanced and displaced by a
distancea/2 along they axis. The energy per particle in thi
case is

E25
c2

ñe
2

1
ñe

2 (
j 51

`
1

j
exp~22k j /ñe!

1
ñe

2 (
j 51

`
exp~22kA~ j 21/2!21c2/ñe!

A~ j 21/2!21c2
, ~6!

FIG. 2. The zero-temperature structural phase diagram.
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whereñe52r 0 /a andc5d/a. The first term in Eq.~6! is the
potential energy due to the confining potential, the sec
term is the energy due to the intrachain interaction, and
last term represents the interchain interactions. Minimiz
E2 with respect to the separation between the chains,c, we
obtained the ground-state energy for the two-chain confi
ration.

Similar straightforward but tedious calculations we
done for the other multichain structures. By symmetry th
is one intrachain distance in the three-chain structure, tw
the four- and five-chain structures, and three in the six-ch
structure. The corresponding expressions for the energy
relegated, for completeness, to Appendix A.

Calculating the energy minimum for each configurati
for different values ofñe at fixedk, we obtain the energy pe
particleE. In Fig. 1 we showE as a function of the density
ñe for k51. Note that for certain density ranges more th
one configuration can be stable~this is made more clear in
the insets of Fig. 1 forñe around 2 and 4.7!. In the low-
density limit the energy per particle is given by the first te
of Eq. ~3!, E5ñeexp(2k/ñe), while the rest of the curve ca
be fitted toE520.0194ñe

210.720ñe20.245 with an error
less than 2.3%.

Calculating the energy minima for differentñe and differ-
ent k we obtain the zero-temperature phase diagram of
2. For k50 we recover the Coulomb limit. We found tha
the energy obtained by the analytical method is in excel
agreement with the one obtained by our Monte Carlo sim
lations with a difference between them less than 0.3%.

We observe the following sequence of transitions as
density increases: from one-chain structure to the two-ch
structure then to the four-chain configuration, back to
three-chain and again to four and then to five-, six-ch
structures etc. Note the remarkable fact that between the
and three chain configurations there is a small intermed
region where a four-chain configuration has a lower ene
For all other transitions the number of chains increases o
by one unit, i.e.n→n11. The relative lateral position of th

FIG. 3. The lateral position of the chains in the Wigner crys
state as a function of the linear density fork51. The thin dotted
line represent the lateral position of the chains for metastable st
which can be formed for density for which the two- and three-ch
configurations are the stable states.
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different chains are depicted in Fig. 3 as a function of t
densityñe . In the case of two and three-chain the intercha
distance increases as the density increases. This is also
for the four-chain configuration too, with some difference
In the first four-chain regime of the phase diagram, the d
tance between the two internal chains is larger than the
tance between the internal chains and the external one
the second regime the behavior of the system is the oppo
with the distance between internal and external chains la
than the one between internal chains. For the other struct
the interchain distance is always a growing function of t
density. It is evident that only the first transition is contin
ous with a clear bifurcation.

In order to gain some insight on the distribution of th
energy in this anisotropic system we present in Fig. 4

l

es,
n

FIG. 4. The energy per chain atT50 and ~a! k50.01, ~b! k
51, and~c! k510. The energy is always higher for the extern
chains but as the Coulomb limit (k!1) is approached the differ
ence is diminished and the system behaves isotropically.
4-4
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energy per particle for each chain. This is computed by c
sidering a particle at a particular chain and taking into
count all the interactions with the rest of the particles. T
cases of interest are the configurations for which it is p
sible to distinguish internal from external chains and may
related to the difference in the melting behavior which
discussed in Sec. V. The interesting observation is tha
every case the energy per particle is larger in the exte
chain than the internal ones.

This asymmetry reflects the fact that for each particle
siding in an external chain the gain in energy due to
confining potential is higher than the difference in the Co
lomb energy due to the lack of symmetric neighbori
chains, as compared to a particle residing in an inter
chain. E.g., for a three-chain system where the middle ch
is the zeroth and the external ones are denoted by11 and
21, we have for the energy of two particles:

E612E05Econ f,611ECoulomb,11,212ECoulomb,61,0.0,
~7!

where ECoulomb,a,b denotes the Coulomb energy of a partic
residing in chaina interacting with the particles in chainb
andEcon f,a denotes its confining energy.

FIG. 5. The derivative of the energy with respect to the den
for k51. Only the transition from one to two wires is continuo
~second order! the rest are first order.
04532
-
-
e
-
e

in
al

-
e
-

al
in

In the case of the first density regimes where the fo
chain structure is optimal this difference is not large due
the fact that the internal distance is lesser than the exte
one. On the contrary, the difference is much larger in
second regime of the four-chain structure. Another intere
ing observation is that as we approach the limit of Coulo
interactions (k!1) the energy difference tends to vanish a
the system behaves isotropically.

B. Structural transitions

We have seen that by increasing the density, the sys
changes its configuration, in other words it undergoes
‘‘structural transition.’’ It is a natural question to study th
order of these transitions. For this purpose the derivative
the energy with respect to the density was calculated wh
is shown in Fig. 5 for the case ofk51. For every value of
the inverse screening length only the transition between
one- and the two-chain configurations is continuous and
the others are discontinuous. This conclusion agrees with
results of Fig. 3, where discontinuous changes of the lat
position of the particles correspond to first-order transitio
The transition 1→2 is a zig-zag transition25 ~Fig. 6!. The
transition 2→4 occurs through a zig-zag transition of ea
of the two chains accompanied by a shift ofa/4 along the
chain, which makes it a discontinuous transition~Fig. 6!. In
principle, these kind of almost zig-zag transitions are p
sible for three-, four-, five-, and six-chains to result into si
eight-, ten-, and twelve-chain structures, respectively. Ac
ally, these were observed during the numerical simulatio
especially for very small value ofk, but they represent meta
stable states and are not the most energetically favored
figurations.

C. Limit of short-range interaction and large density

In order to make the connection with the regime whe
the hard-core potential can be used as a working hypothe
we investigate the limitl!a. It can be shown that the varia
tion of the distances between chains can be neglected an
the limit wheremv0

2W2!q2/(ae) (W is the width of the
strip!, following the spirit of the hydrodynamic consideratio

y

n-
FIG. 6. The mechanism of the structural tra
sitions 1→2 chains and 2→4 chains.
4-5
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of Koulakov and Shklovskii26 the difference in the distanc
between chains at the bordersd(6W/2) and at the cente
d(0) follows the relation

dd05d0~W/2!2d0~0!'l ln l , ~8!

wherel is the number of chains andd05Ad21a2/4.
This can be estimated by considering the pressuresyy in

the crystal exercised by the external potential. Adopting
method similar to Refs. 26 and 27,

syy52S~s!
mv0

2

2 S W2

4
2y2D , ~9!

where 3/4<S(s)<1 ands is the Poisson ratio, we assume
uniform densityn and S(s)'1. Then, balancing the forc
by the pressure and the interaction forces we get~in this
estimate we keep the dimensions for clarity!

2dq2

e~d21a2/4!
exp~2Ad21a2/4/l!;

ndmv0
2

2
~W2/42y2!,

~10!

from this relation

d0~y![Ad~y!21a2/4

'l lnF 4q2

emv0
2n~W2/42y2!~d~y!21a2/4!

G , ~11!

subtracting the values ofd0 at W2a/2 and 0 we obtain Eq
~8!.

Therefore in the case of very short-range interactiondd
!d(0). Then one can adopt the hard-core potential and
sentially the total energy becomes the sum of the energ
each particle due to the confining potential. The average
ergy per unit lengthE/L then reads

E/L'
1

24
mv0

2 W2

la
. ~12!

IV. NORMAL MODES

A. Normal modes in the absence of an external magnetic field

We now turn to the calculation of the normal modes of t
system, following the standard harmonic approximatio28

and exploiting the translational invariance of the syst
along thex direction. The number of chains determines t
number of particles in each unit cell and therefore the nu
ber of degrees of freedom per unit cell. So ifl is the number
of chains there will be 2l branches for the normal mod
dispersion curves:l acoustical branches as well asl optical
ones. Note that for ordinary bidimensional crystals there
2 acoustical branches and 2r 22 optical branches, ifr is the
number of atomic species in the unit cell. We present
results for the one-, two-, and three-chain structures in Fig
Note that for the one-chain structure the unit cell consists
a single particle, i.e.,r 51, and therefore one expects only
single acoustical branch and no optical branch. The app
ance of the optical branch is a consequence of the pres
of the confining potential in they direction. Note that fork
→0, vopt'v0, which corresponds to the center-of-ma
04532
a
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FIG. 7. The normal modes of the system in the one-~a!, two-
~b!, and three-~c! chain configurations. The optical and acoustic
branches correspond to motion in the confined and unconfined
rections, respectively. The wavelength is in units ofp/a, wherea is
the length of the unit cell. The letters indicate the different motio
as presented in Fig. 9.

FIG. 8. The phonon spectrum at the softening of the opti
mode at the structural transition from one to two chains.
4-6
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motion of the system in the confining potential.
In order to find the eigenmodes we solve the system

equations

~v2dab,i j 2Dab,i j !Qb, j50, ~13!

where Qb, j is the displacement of the particlej from its
equilibrium position in theb direction, (a,b)[(x,y), dab,i j
is a unit matrix andDab,i j is the dynamical matrix defined
by

Dab,i j 5
1

m (
n

fa,b~n!e2 inqa, ~14!

wheren is an integer assigned to each unit cell and the fo
constants are

fa,b~n!5]a]b

exp~2kA~x2x8!21~y2y8!2 !

A~x2x8!21~y2y8!2
, nÞ0,

~15!

evaluated atx2x8P$an,a(n11/2)%, y2y85 relevant in-
terchain distance, and

fa,b~n50!52 (
nÞ0

fa,b~n!. ~16!

All the frequencies are measured in unit ofv0 /A2. In Ap-
pendix B we present for completeness the expressions fo
matrix, where the modes for the three-chain structure w
calculated as an example.

The main feature is the softening of the optical mode
the one-chain structure at the values ofñe andk where the
structural transition is observed~zig-zag transition! accom-
panied by a hardening of the acoustical branch~Fig. 8!,
which confirms that 1→2 is a continuous transition as a
serted before.

Studying the eigenvectors of the dynamical matrix it
easy to recognize that the optical modes are identified w
the motion in the direction of confinement (y direction!,
while the acoustical modes are identified with the motion
the unconfinedx direction.

The eigenfrequencies for the single chain are given
vac5AA1 for the acoustical branch andvopt5A11A2 for
the optical branch, whereA1 andA2 are defined in Appendix
B.

In the limit of small wavenumbersk, the summations can
be done analytically and we obtain

vac~k!5F2 ln~12e2k/ñe!1
k

ñe

e2k/ñe

12e2k/ñe

1
k2

2ñe
2

e2k/ñe

~12e2k/ñe!2G 1/2

ñe
3/2ukua, ~17!
04532
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vopt~k!5H 12F2 ln~12e2k/ñe!

1
k

ñe

e2k/ñe

12e2k/ñe
G ñe

3k2a2J 1/2

, ~18!

which gives explicitly the dependence of the modes on
density and the screening parameter. In the limitk/ñe@1,

vac~k!5e2k/2ñe kAñe

2
ukua, ~19!

vopt~k!512e2k/ñe
ñe

2

4k
k2a2, ~20!

while in the opposite limitk/ñe!1,

vac~k!5F3

2
1 lnS ñe

k
D G1/2

ñe
3/2ukua, ~21!

vopt~k!5H 12F11 lnS ñe

k
D G ñe

3k2a2J 1/2

. ~22!

There is a remarkable difference in the optical branch
the spectrum between the single-chain and the two-
three-chain structures. In the first case the frequency of
optical branch decreases as the wave numberk increases,
while for the two- and three-chain structures the optical f
quency increases. In the single-chain configuration the o
cal mode corresponds to oscillations of the particles in
confined direction@see, e.g., Fig. 9~b!#, which reduces the
Coulomb repulsive energy. For the two-chain configurat
the normal modes are shown in Figs. 9~c!–9~g!. In fact this
branch is nothing else than a transverse acoustical m
while the acoustical branch corresponds to longitudi
motion.4,29

B. Normal modes in the presence of an external magnetic field

We now consider the effect of applying a constant ma
netic field B in the z direction. For quantum particles, th
magnetic field can localize the charged particles into cyc
tron orbits, therefore aiding the formation of a Wigner crys
in the presence of a magnetic field. It is known30 that in a
classical system an external magnetic field does not alter
statistical properties of the system and consequently
structural properties and the melting temperature are ins
sitive to the magnetic field strength. But on the other ha
the character of motion of the particles is altered significan
when the cyclotron frequency is larger than the eigenf
quencies of the system. The magnetophonon spectrum o
infinite 2D Wigner crystal in a magnetic field was obtained
Refs. 31 and 21. In the presence ofB, the system of equa
tions is modified to

~v2dab,i j 2Dab,i j 1 ivvcjabd i j !Qb, j50, ~23!
4-7
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FIG. 9. The motion of the particles for th
one-, two-, and three-chain structures which co
responds to the different eigenfrequencies.
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wherejab is the Levi-Civita tensor andvc5qB/mc is the
cyclotron frequency. In Fig. 10 we show some typical d
persion curves for the one- and three-chain structures
different values ofvc . It is interesting to note how the op
tical modes couple with the magnetic field, the optical f
quencies follow the cyclotron frequency and for very hi
field strength there is no significant difference betweenvopt
and vc . The acoustical frequencies, on the other hand,
crease with the magnetic-field strength. For the single ch
the eigenfrequencies are modified to

v~k!5$ 1
2 ~11A11A21vc

2!6 1
2 @~11A11A21vc

2!2

24A1~11A2!#1/2%1/2, ~24!
04532
-
or
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whereA1 and A2 are given in Appendix B. For very large
field when vc@$A1 ,A2,1% the gap between the optica
branches and the acoustical ones approachesvc . The optical
frequency reflects the cyclotron motion of the system wh
suppresses any soft excitation. As before, it is interesting
study the normal modes at the critical density of the tran
tion from the one-chain to the two-chain structures~Fig. 11!.
We observe that there is always softening at the same
sity, independently of the strength of the magnetic-field,
with a main difference that for zero magnetic-field streng
the modes which soften is the optical one, while when
magnetic-field strength is nonzero, the acoustic mode is
one that softens. The magnetic field induces a coupling
tween the acoustic and the optical modes and there is
FIG. 10. Typical dispersion
curves for the one-~a! and three-
~b! chain structures for two differ-
ent magnetic-field values.
4-8
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anticrossing between the two branches. Although these fi
ings confirm the previous assertion that the presence oB
does not alter the structural properties of the system it a
reveals the differences~softening of the acoustic mode at th
same density, influence on the gap between optical
acoustical branches and on eigenfrequencies within e
branch!, which are induced by the magnetic field.

V. MELTING

A. General discussion and results

In this section we study the melting of the WC by Mon
Carlo ~MC! simulations. After the ground-state configuratio
was achieved as explained in Sec. II, the system was he
up by steps of sizeDT, typically DT5531024, and equili-
brated to this new temperature during 105–106 MC steps. In
Fig. 12 we show typical trajectories of particles as they ar
from our MC simulation. It is evident that there is a differe
behavior of the system in thex and they directions as may be
expected by the anisotropy in the two directions. In orde
quantify the observations, we studied first the potential
ergy as a function of temperature~Fig. 13!. In the crystalline

FIG. 11. The magnetic-field dependence of the softening of
phonon mode at the structural transition from one to two chain
04532
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state the potential energy of the system increases practic
linearly with temperature and then exhibits a very fast
crease in a small critical temperature range after which
starts to increase linearly again but now with a slightly larg
slope. In the latter region the system is in the disordered~i.e.,
liquid! phase. The fast increase of the potential energy
indicative of the melting of the WC. To find the critical tem
peratures we studied, following the spirit of Ref. 32, t
modified Lindemann parameterLp5^u2&/dr

2 , where^u2& is
defined by the difference in the mean-square displacem
of neighboring particles from their equilibrium sitesrW0 and
dr is the relevant interparticle distance as we discuss be
The quantity^u2& can be written as

^u2&5
1

N K (
i 51

N
1

Nnb
(
j 51

Nnb

@~rW i2rW0i !2~rW j2rW0 j !#
2L , ~25!

where^& means the average over the MC steps,N is the total
number of particles in our simulation unit cell and the ind
j denotes theNnb nearest neighbors of particlei. In order to
describe more accurately the difference between the two
rections, we studied separately^ux

2& and^uy
2& as functions of

temperature. For the melting along thex direction, the dis-
tancedr is the interparticle distancea introduced in Sec. I,
while for melting along they direction dr is the interchain
distance which is a function of the densityñe .33,34

At low temperatures, the mean-square relative displa
ments slowly increases linearly with temperature as a con
quence of harmonic oscillations of the particles about th
equilibrium positions~see Fig. 14!. From Fig. 14 we note
clearly that this linear increase is larger in the unconfin
direction than in the confined direction. In some critical te
perature region,̂ux

2& and ^uy
2& start to increase very rapidly

which is the consequence of the fact that the particles h
attained sufficient thermal energy that they can jump
tween different crystallographic positions. According to t
modified Lindemann criterion~MLC!, whenLp reaches the

e

nd

FIG. 12. Particle trajectories for 33107

MC steps for three different temperatures a
three different values of the density atk50.01,
1, and 3.
4-9
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PIACENTE, SCHWEIGERT, BETOURAS, AND PEETERS PHYSICAL REVIEW B69, 045324 ~2004!
~semiempirical! critical value 0.1 the system melts. This cr
terion was used to define the melting temperatureTm .

From the corresponding analysis two different melti
temperaturesTx andTy can be assigned. The results are su
marized in the phase diagram of Figs. 15~a!–15~c! for k
50.01, 1, and 3, respectively. There are several interes
features in these phase diagrams.

~a! The nearly Coulomb system (k50.01) has a melting
temperature which is on average 15–20% higher than for
screened Coulomb interparticle interaction withk51, which
has on its turn an average melting temperature about 1
higher than the screened Coulomb system withk53. There-
fore, we conclude that the effect of screening is to reduce
melting temperatures;

~b! A reentrantbehavior is observed as a function of de
sity, the minima of the melting temperatures occur at
values of the density where the structural phase transit
were predicted~see Fig. 2!;

FIG. 13. The energy per particle as a function of temperature

the four-chain structure withk51 and ñe53.9. There is a fast
increase of the energy at the melting temperature.

FIG. 14. The mean-square relative displacements fork51, ñe

51.6 in the case of the two-chain configuration. The dashed h
zontal line corresponds to the modified Lindemann criterion~MLC!
in the unconfined direction, while the dotted line corresponds to
MLC in the confined direction.
04532
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~c! There is a regime close to each structural transit
point where the system isfrustrated, in the sense that it fluc-
tuates between the two structures. In this regime, which
term as frustration regime, the system makes continu
transitions from one metastable state to the other wh
strongly reduces the melting temperature;

~d! For k51 andk53, there is a region in density fo
which the system melts first in the unconfined directio
while it is not melted in the confined one. This regime r
sembles the findings of Ref. 15 in the regime termed
locked floating solid. For the Coulomb limit there is no evi

r

i-

e

FIG. 15. Melting temperature as a function of density for:~a!
k50.01, ~b! k51, and~c! k53. The insets in~a! and~b! show an
enlargement of the four-chain region, which is located between
two- and three-chain phases.
4-10
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dence of anisotropic melting within the error bars of o
simulation. The system behaves more isotropic;

~e! The first four-chain regime@see insets of Figs. 15~a!–
15~c!# is unstable with respect to temperature fluctuations
it is reflected in the relative low melting temperature. In th
region, melting occurs first in the confined direction as
consequence of the particular structural properties—the
tance between the two internal chains is larger than the
tance between an internal chain and the adjacent exte
one—which makes the system unstable in they direction. In
the rest of the diagram there is evidence that the mel
either starts from the unconfined direction~e.g., it is clear in
the single chain and in the low-density limit of the tw
chains! or the system melts simultaneously in both dire
tions; and

~f! The single-chain structure shows a relatively lar
melting temperature as obtained by the MLC and dese
more attention. The study of the single-chain is theref
postponed to the following section.

Furthermore, note that the MLC only takes into accou
the displacement of the particles relative to the position
their neighbors and consequently is only a measure of
local order of the system.

Another natural question that arises is whether there
anisotropic melting with respect to external and inter
chains in the multichain structures or in other words if me

FIG. 16. Particle trajectories for 33107 MC steps which quali-
tatively illustrates the different melting behavior at the boundar
due to the confining potential fork51.

FIG. 17. Temperature dependence of the displacements in
the unconfined and confined directions for external and inte
chains in the four-chain structure.
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ing starts from the edges as observed in the experimen
Ref. 3 with electrons on liquid helium. The number of fil
ments that were observed in the experiment was'20; we
have simulated the trajectories of some multichain structu
and the results are presented in Fig. 16. In this picture i
clear that the most external chains are already melted, w
the internal ones are still ordered. Edge melting, has a
been demonstrated in the presence of a strong magnetic
in Ref. 35 using Hartree-Fock calculations in a tw
dimensional Wigner crystal with edges. With the aid of ma
numerical simulations of multichain systems at different de
sities we observed that this kind of melting is present in o
system when the density is close enough to the critical d
sity of a structural transition. Close to the structural tran
tion many metastable states appear with a different num
of particles per chain, that is, in the most external cha
there are less particles than in the internal ones. Thus
particles at the most external chains have larger displa
ments from their equilibrium positions in order to attain t
stability of the structure. Furthermore, we calculated the
erage root-mean-square displacements of the particles
their equilibrium position chain by chain and also^ux

2& chain
by chain and we actually noted that these quantities
slightly larger for external chains at temperatures below
critical one. In Fig. 17 we present the temperature dep
dence of the standard deviationsx

25^(ux2^ux&)
2& and sx

2

5^(uy2^uy&)
2& for the external and internal chains in th

four-chain structure. It is evident that the position of t
particles at the edges fluctuates substantially more than
particles at the interior. We can conjecture that, according
this physical picture, melting can start from the edges. Ho
ever, for up to the six-chain configuration for each chain
quantities^ux

2& reached the critical value, approximately, a
at the same temperature. Probably, going to a larger num
of filaments one can well appreciate a different melting te
perature for external and internal chains. Finally, the ch
configuration as well as the melting which starts from t

s

th
al

FIG. 18. The behavior of the Lindemann parameter for
single-chain regime at four different densities. It shows how
linear regime at higher densities becomes sublinear at lower de
ties.
4-11
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direction of the chains is supported also by molecular
namics simulations of the flow of electrons in Q1
channels.36

B. Melting of the single chain

In Figs. 15~a!–15~c! we observe a rather high meltin
temperature in case of the one-chain structure. The origi
this behavior can be traced back to the fact that the M
takes into account a larger contribution from jumps of p
ticles between crystallographic positions which for t
single-chain structure occurs only at extremely high tempe
ture. For the single-chain case the jumps can only oc
along the chain which requires a larger energy than jump
particles between different chains.

To have a better insight we investigated the behavior
Lp for different densities~Fig. 18!. We note that in the low-
density limit @see Fig. 18~a!#, Lp '0.1 is reached in a region

FIG. 19. The pair-correlation function at different temperatur
for three different densities, for the single-chain configuration.
04532
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f

in which there is only a gradual increase in^ux
2& which is

very different from the multichain case~see Fig. 14!. Fur-
thermore,̂ ux

2& exhibits a sublinear temperature increase.
This calls for the use of other possible criteria in order

clarify the situation. On the other hand, if the density
relatively high~see Fig. 18!, a fast increase is observed si

,

FIG. 20. The height of the first and second peaks of the p
correlation function for the single chain as a function of temperat
for three different densities.The lines are the best fits with the fu
tion a(T/T0)2b.
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naling a clear melting of the system. The transition from
low temperature linear to sublinear behavior occurs forñe
'0.4.

To shine light into the posed questions we studied also
pair-correlation function at different densities and tempe
tures, as defined by

g~x!5
L

N2 (
iÞ j

^d@x2~xi2xj !#&, ~26!

where in the summation overN particles in a system o
lengthL, the diagonal terms (i 5 j ) are excluded. The result
are reported in Fig. 19. It is rather evident that the melt
temperature is substantially smaller than the one obta
from the MLC. In order to better quantify the melting tem
perature for the one-chain structure we investigated
height of the first and second peaks of the pair-correla
function as function of temperature~see Fig. 20! in order to
look for a structure or an anomalous jump~as found in Ref.
37! that could identify the critical temperature. As is app
ent from Fig. 20 we do not find any abrupt changes. The fi
and second peaks as a function of temperature can be
by gi5a(T/T0)2b, wherei 5$1 or 2% denotes the peak~see
the curves in Fig. 20!.

The values of (a,b) are ~2.922, 0.274! for i 51 and
~1.895, 0.216! for i 52 when ñe50.2, ~9.320, 0.433! for i

51 and ~7.345, 0.466! for i 52 when ñe50.5, ~14.788,
0.473! for i 51 and~11.552, 0.501! for i 52 when ñe50.8
and in each case the error is less than 1%.

From the study of the pair-correlation function we co
clude that at moderate (ñe<0.2 for k51) densities, the
chain is melted at arbitrarily weak temperature. For hig
densities the chain retains correlations up to higher value
the temperature but these values are less than those obt
by the MLC.

We noticed from the high-density regime (ñe.1), where
we reach the multichain structure, that another semiempir

FIG. 21. The melting temperature for the single chain as
tained from the two complementary criteria.
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criterion can be formulated using the pair-correlation fun
tion. If we consider the ratio of the height of the fifth peak
g(x) above 1 (H521) to the height of the first peak above
(H121) at those densities where themaximummelting tem-
perature is obtained for the two-, three-, and four-chain str
tures, melting occurs when

H521

H121
~Tm!'0.15. ~27!

Employing this criterion~termed as pair-correlation functio
criterion or PCFC! we obtain the results of Fig. 21, were w
present both the relevant temperatures obtained by MLC
PCFC.

It is worth noticing that this criterion does not work we
at temperatures close to the structural transitions. The rea
is that although particles ‘‘jump’’ to new sites in order t
attain the new positions, the pair-correlation function s
measures correlations at certain distances and, most im
tantly, the height of the first peak is substantially reduc
which artificially enhances the ratio Eq.~27!.

Thus the value of 15% which works far from the stru
tural transitions is too high for the regime close to the str
tural transitions. It is therefore evident that the two crite
can work in a complementary manner.

VI. DISCUSSION AND CONCLUSIONS

The structural phase transitions and the melting can
studied experimentally using parabolically confined colloid
particles or dusty plasmas in the case of a screened Coul
interparticle interaction. Another important experimental s
tem are electrons floating on liquid helium, where it is po
sible to achieve relatively narrow Q1D channels on ve
stable suspended helium films over structured substrat38

Assuming a semicircular profile of the liquid surface acro
the channels then the confining potential is parabolic near
bottom withv05(eE'

* /mR) ~Ref. 38!, whereE'
* is the ef-

fective holding electric field in the case of the substrate a
R is the radius of the semicircular profile. Assuming a rad
of '5 mm, a typical value forE'

* '10 kV/cm then v0

'1011 Hz. This in turn produces aT0'60 K. The melting
temperatures which have been obtained in the present w
are of the order of 10223T0 which results in a melting tem
perature'0.521 K, a temperature range which is routine
achieved in such experiments. Assuming an interelectron
tance of'0.1–1 mm leads to a dimensionless linear dens
ñe'(0.523)l , wherel is the number of chains. The dilut
limit gives the sameñe as the one investigated in the prese
work.

Another issue connected with melting, which deserves
terest, is the appearance of topological defects so th
KTHNY ~Ref. 18! scenario of melting is possible. In Ref
26, 32, 39 this question was considered in the case o
circular confining potential with a finite number of particle
In the case of short-range interactions the defects are pu
to the surface due to the large price for elastic deformatio
while in the Coulomb case shear and Young moduli are re
tively small.26

-
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Moreover, because of the incommensurability of the cir
with the hexagonal Wigner crystal the defects do not res
exactly at the borders but in a zone few lattice spacings
side the crystal. Therefore, three different regimes with d
ferent melting temperatures can be detected.39 In our case
there is no such incommensurability and the edges can
commodate the defects easily. This has also been discu
in the case of a quantum Hall bar by Nazarov in Ref. 40

In conclusion, we investigated the structural, dynami
properties, and melting of a classical quasi-1D system
particles interacting through a Yukawa-type potential in
range from Coulomb to very short-range interaction in
case where the confinement is modeled by an external p
bolic potential. The structural transitions are of first~prima-
rily ! and second orders. The normal modes of the sys
were calculated in the presence of a perpendicular magn
field. In certain regions of the parameter space, there is
dence that melting starts first in the unconfined direction
04532
e
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f
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e
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fore the system melts along the chain direction. Furtherm
we found thatTm shows a reentrant behavior as a function
the density of the system and a regime of frustration aro
each point of structural transition can be identified. In t
case of the single-chain structure, we device a new crite
in order to take into account the correlations at different te
peratures. The present study is suitable to describe collo
particles, dusty plasmas and electrons floating on liquid
lium.

ACKNOWLEDGMENTS

Stimulating discussions and collaboration with N. Stud
and H. Carmona are gratefully acknowledged. This work w
supported in part by the European Community’s Human
tential Program under Contract No. HPRN-CT-2000-001
‘‘Surface Electrons,’’ the Flemish Science Foundati
~FWO-Vl!, IUAP-VI, and the GOA.
distances

ese
APPENDIX A

The expressions for the energy in the configurations beyond the two-chain structure are presented below. All the
are in units of the interchain distancea between adjacent particles.

For the three-chain structure

E35
ñe

3 (
m51

`

exp~23mk/ñe!/m1
4ñe

9 (
m51

` exp~23kA~m21/2!21c3
2/ñe!

A~m21/2!21c3
2

1
2ñe

9 (
m51

` exp~23kAm214c3
2/ñe!

Am214c3
2)

16
c3

2

ñe
2

1
ñeexp~26c3k/ñe!

18c3
, ~A1!

where the intrachain distancec3 is a variational parameter.
For the four-chain structure

E45
ñe

4 (
m51

l
exp~24km/ñe!

m
1

ñe

4 (
m51

`
exp~24kA~m21/2!21~c42 f 4!2/ñe!

A~m21/2!21~c42 f 4!2
1

ñe

4 (
m51

`
exp~24kA~m21~c41 f 4!2/ñe!

Am21~c41 f 4!2

1
ñe

8 (
m51

` exp~24kA~m21/2!214 f 4
2/ñe!

A~m21/2!214 f 4
2

1
ñe

8 (
m51

` exp~24kA~m21/2!214c4
2/ñe!

A~m21/2!214c4
2

1
8c4

2

ñe
2

18 f 4
2/ñe

2

1
ñe

8

exp@24~c41 f 4!k/ñe#

c41 f 4
, ~A2!

wherec4 is the distance of an inner chain andf 4 is the distance of an outer chain from the middle of the structure. Th
distances are two variational parameters which have to be optimized numerically.

For the five-chain structure

E55
10c5

2

ñe
2

1
10f 5

2

ñe
2

1
ñe

5 (
m51

`
exp~25km/ñe!

m
1

4ñe

25 (
m51

`
exp~25kA~m21/2!21~c52 f 5!2/ñe!

A~m21/2!21~c52 f 5!2

1
4ñe

25 (
m51

` exp~25kAm21c5
2/ñe!

Am21c5
2

1
2ñe

25

exp~25c5k/ñe!

c5
1

4ñe

25 (
m51

`
exp„25kA~m21/2!21~c51 f 5!2/ñe…

A~m21/2!21~c51 f 5!2

1
2ñe

25 (
m51

` exp~25kAm214c5
2/ñe!

Am214c5
2

1
ñe

50

exp~210c5k/ñe!

c5
1

4ñe

25 (
m51

` exp„25kA~m21/2!21 f 5
2/ñe…

A~m21/2!21 f 5
2
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1
2ñe

25 (
m51

`
exp~25kAm214 f 52!/ñe)

Am214 f 5
2

1
ñeexp~210f 5k/ñe!

50f 5
, ~A3!

with the variational parametersc5 and f 5, which are the distance of an inner chain, and outer chain, respectively, from
middle of the structure.

For the six-chain structure

E65
12f 6

2

ñe
2

1
12g6

2

ñe
2

1
12h6

2

ñe
2

1
ñe

6 (
m51

`
exp~26km/6!

m

1
ñe

18 (
m51

` S exp~26kA~m21/2!214h6
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1
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1

ñe

9 (
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`
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A~m21/2!21~g62 f 6!2)

1
ñe

9 (
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Am21~h62 f 6!2
1

ñe
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1
ñe

9 (
m51

`
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1
ñe
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1
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9 (
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1
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with f 6 , g6, and h6 the three-chain distances from the middle of the crystal, starting from the inner one which a
variational parameters.

APPENDIX B

We present the matrixv2I2D, whereI is the unit matrix andD is the dynamical matrix, for the calculation of the norm
modes for the three-chain structure. It reads

v2I2D5S v22A1 0 2A3 0 2A5 0

0 ~v22v0
2!2A2 0 2A4 0 2A6

2A3 0 v22A1 0 2A3 0

0 2A4 0 ~v22v0
2!2A2 0 2A4

2A5 0 2A3 0 v22A1 0

0 2A6 0 2A4 0 ~v22v0
2!2A2

D , ~B1!

where the parameters are

A15ñe
3(
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`
1

27j 3
exp~23 j k/ñe!@216 j k/ñe19 j 2k2/ñe

2#@12cos~ k̃p j !#,

A252ñe
3(

j 51

`
1

27j 3
exp~23 j k/ñe!~213 j k/ñe!@12cos~ k̃p j !#,
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A35ñe
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`
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2
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1
9k2@~ j 11/2!21c3
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ñe
2

13G2S 11
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2

ñe
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2#,

A55ñe
3(

j 51

`
1

27Aj 214c3
2

exp~23kAj 214c2/ñe!@cos~ k̃p j !21#F S 9kAj 214c3
2

ñe

1
9k2~ j 214c3
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ñe
2

13D ~ j 214c3
2!

2S 11
3kAj 214c3

2

ñe
D ~ j 214c3

2!G ,

A65ñe
3(

j 51

`
1

27Aj 214c3
2

exp~23kAj 214c3
2/ñe!@cos~ k̃p j !21#F S 9kAj 214c3
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9k2~ j 214c3

2!
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2

13D 4c3
2

2S 11
3kAj 214c3

2
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D ~ j 214c3

2!G ,

wherek̃5ak/p is the dimensionless wave number.
The modes for the single chain are obtained by the top left part of the matrix~B1! which forms a 232 submatrix and

involves the elementsA1 andA2 which have exactly the same form with the substitutionñe/3→ñe .
Similarly, the modes for the two-chain structure can be obtained by the 333 submatrix which is included in the top left pa

of matrix ~B1! and involves the elementsA1 , A2, andA3 with the substitutionñe/3→ñe/2.
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