116 research outputs found

    Nicotine replacement therapy for agitation and delirium management in the intensive care unit: a systematic review of the literature.

    Get PDF
    BACKGROUND: Active smokers are prevalent within the intensive care setting and place a significant burden on healthcare systems. Nicotine withdrawal due to forced abstinence on admission may contribute to increased agitation and delirium in this patient group. The aim of this systematic review was to determine whether management of nicotine withdrawal, with nicotine replacement therapy (NRT), reduces agitation and delirium in critically ill patients admitted to the intensive care unit (ICU). METHODS: The following sources were used in this review: MEDLINE, EMBASE, and CINAHL Plus databases. Included studies reported delirium or agitation outcomes in current smokers, where NRT was used as management of nicotine withdrawal, in the intensive care setting. Studies were included regardless of design or number of participants. Data were extracted on ICU classification; study design; population baseline characteristics; allocation and dose of NRT; agitation and delirium assessment methods; and the frequency of agitation, delirium, and psychotropic medication use. RESULTS: Six studies were included. NRT was mostly prescribed for smokers with heavier smoking histories. Three studies reported an association between increased agitation or delirium and NRT use; one study could not find any significant benefit or harm from NRT use; and two described a reduction of symptomatic nicotine withdrawal. A lack of consistent and validated assessment measures, combined with limitations in the quality of reported data, contribute to conflicting results. CONCLUSIONS: Current evidence for the use of NRT in agitation and delirium management in the ICU is inconclusive. An evaluation of risk versus benefit on an individual patient basis should be considered when prescribing NRT. Further studies that consider prognostic balance, adjust for confounders, and employ validated assessment tools are urgently needed

    Looking for interaction: quantitative measurement of research utilization by Dutch local health officials

    Get PDF
    Background: In the Netherlands, local authorities are required by law to develop local health memoranda, based on epidemiological analyses. The purpose of this study was to assess the actual use of these epidemiological reports by municipal health officials and associated factors that affect this use.Method: Based on a conceptual framework, we designed a questionnaire in which we operationalized instrumental, conceptual, and symbolic use, the interaction between researchers and local health officials, and four clusters of barriers in this interaction process. We conducted an internet survey among 155 Dutch local health officials representing 35% of all Dutch municipalities. By means of multiple regression analyses, we gained insight into the related factors for each of the three types of research utilization.Results: The results show that local health officials use epidemiological research more often in a conceptual than an instrumental or symbolic way. This can be explained by the complexity of the local policy process which is often linked to policies in other areas, and the various policy actors involved. Conceptual use was statistically associated with a presentation given by the epidemiologist during the policy process, the presence of obstructions regarding the report's accessibility, and the local official's personal belief systems and interests originating from different professional values and responsibilities. Instrumental and symbolic use increased with the involvement of local officials in the research process.Conclusions: The results of this study provide a partial solution to understanding and influencing research utilization. The quantitative approach underpins earlier qualitative findings on this topic. The outcomes suggest that RPHS epidemiologists can use different strategies to improve research utilization. 'Blurring the boundaries', and the enhancement of interfaces between epidemiologists and local health officials, like direct interactions into each other's work processes, is expected to create better possibilities for optimizing research use

    Dopaminergic Activation of Estrogen Receptors Induces Fos Expression within Restricted Regions of the Neonatal Female Rat Brain

    Get PDF
    Steroid receptor activation in the developing brain influences a variety of cellular processes that endure into adulthood, altering both behavior and physiology. Recent data suggests that dopamine can regulate expression of progestin receptors within restricted regions of the developing rat brain by activating estrogen receptors in a ligand-independent manner. It is unclear whether changes in neuronal activity induced by dopaminergic activation of estrogen receptors are also region specific. To investigate this question, we examined where the dopamine D1-like receptor agonist, SKF 38393, altered Fos expression via estrogen receptor activation. We report that dopamine D1-like receptor agonist treatment increased Fos protein expression within many regions of the developing female rat brain. More importantly, prior treatment with an estrogen receptor antagonist partially reduced D1-like receptor agonist-induced Fos expression only within the bed nucleus of the stria terminalis and the central amygdala. These data suggest that dopaminergic activation of estrogen receptors alters neuronal activity within restricted regions of the developing rat brain. This implies that ligand-independent activation of estrogen receptors by dopamine might organize a unique set of behaviors during brain development in contrast to the more wide spread ligand activation of estrogen receptors by estrogen

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    EXACKTE2: Exploiting the clinical consultation as a knowledge transfer and exchange environment: a study protocol

    Get PDF
    Background While the evidence suggests that the way physicians provide information to patients is crucial in helping patients decide upon a course of action, the field of knowledge translation and exchange (KTE) is silent about how the physician and the patient influence each other during clinical interactions and decision-making. Consequently, based on a novel relationship-centered model, EXACKTE2 (EXploiting the clinicAl Consultation as a Knowledge Transfer and Exchange Environment), this study proposes to assess how patients and physicians influence each other in consultations. Methods We will employ a cross-sectional study design involving 300 pairs of patients and family physicians from two primary care practice-based research networks. The consultation between patient and physician will be audio-taped and transcribed. Following the consultation, patients and physicians will complete a set of questionnaires based on the EXACKTE2 model. All questionnaires will be similar for patients and physicians. These questionnaires will assess the key concepts of our proposed model based on the essential elements of shared decision-making (SDM): definition and explanation of problem; presentation of options; discussion of pros and cons; clarification of patient values and preferences; discussion of patient ability and self-efficacy; presentation of doctor knowledge and recommendation; and checking and clarifying understanding. Patients will be contacted by phone two weeks later and asked to complete questionnaires on decisional regret and quality of life. The analysis will be conducted to compare the key concepts in the EXACKTE2 model between patients and physicians. It will also allow the assessment of how patients and physicians influence each other in consultations. Discussion Our proposed model, EXACKTE2, is aimed at advancing the science of KTE based on a relationship process when decision-making has to take place. It fosters a new KTE paradigm by putting forward a relationship-centered perspective and has the potential to reveal unknown mechanisms that underline effective KTE in clinical contexts. This will result in better understanding of the mechanisms that may promote a new generation of knowledge transfer strategies

    Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury

    Full text link
    [EN] Objectives Acquired brain injury (ABI) can lead to the emergence of several disabilities and is commonly associated with high rates of anxiety and depression symptoms. Self-related constructs, such as self-esteem and self-compassion, might play a key role in this distressing symptomatology. Low explicit (i.e., deliberate) self-esteem is associated with anxiety and depression after ABI. However, implicit (i.e., automatic) self-esteem, explicit-implicit self-discrepancies, and self-compassion could also significantly contribute to this symptomatology. The purpose of the present study was to examine whether implicit self-esteem, explicit-implicit self-discrepancy (size and direction), and self-compassion are related to anxious and depressive symptoms after ABI in adults, beyond the contribution of explicit self-esteem. Methods The sample consisted 38 individuals with ABI who were enrolled in a long-term rehabilitation program. All participants completed the measures of explicit self-esteem, implicit self-esteem, self-compassion, anxiety, and depression. Pearson's correlations and hierarchical regression models were calculated. Results Findings showed that both self-compassion and implicit self-esteem negatively accounted for unique variance in anxiety and depression when controlling for explicit self-esteem. Neither the size nor direction of explicit-implicit self-discrepancy was significantly associated with anxious or depressive symptomatology. Conclusions The findings suggest that the consideration of self-compassion and implicit self-esteem, in addition to explicit self-esteem, contributes to understanding anxiety and depression following ABI.Lorena Desdentado is supported by a FPU doctoral scholarship (FPU18/01690) from the Spanish Ministry of Universities. This work was supported by CIBEROBN, an initiative of the ISCIII (ISC III CB06 03/0052).Desdentado, L.; Cebolla, A.; Miragall, M.; Llorens Rodríguez, R.; Navarro, MD.; Baños, RM. (2021). Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury. Mindfulness. 12(4):899-910. https://doi.org/10.1007/s12671-020-01553-wS899910124Anson, K., & Ponsford, J. (2006). Coping and emotional adjustment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(3), 248–259. https://doi.org/10.1097/00001199-200605000-00005.Baños, R. M., & Guillén, V. (2000). Psychometric characteristics in normal and social phobic samples for a Spanish version of the Rosenberg Self-Esteem Scale. Psychological Reports, 87(1), 269–274. https://doi.org/10.2466/pr0.2000.87.1.269.Beadle, E. J., Ownsworth, T., Fleming, J., & Shum, D. (2016). The impact of traumatic brain injury on self-identity: a systematic review of the evidence for self-concept changes. The Journal of Head Trauma Rehabilitation, 31(2), E12–E25. https://doi.org/10.1097/HTR.0000000000000158.Beck, A. T. (1979). Cognitive therapy of depression. New York: Guilford Press.Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975–1002. https://doi.org/10.1016/j.cpr.2005.03.003.Bos, A. E. R., Huijding, J., Muris, P., Vogel, L. R. R., & Biesheuvel, J. (2010). Global, contingent and implicit self-esteem and psychopathological symptoms in adolescents. Personality and Individual Differences, 48(3), 311–316. https://doi.org/10.1016/j.paid.2009.10.025.Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.Brenner, R. E., Heath, P. J., Vogel, D. L., & Credé, M. (2017). Two is more valid than one: examining the factor structure of the self-compassion scale (SCS). Journal of Counseling Psychology, 64(6), 696–707. https://doi.org/10.1037/cou0000211.Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 1–38. https://doi.org/10.5334/joc.72.Carroll, E., & Coetzer, R. (2011). Identity, grief and self-awareness after traumatic brain injury. Neuropsychological Rehabilitation, 21(3), 289–305. https://doi.org/10.1080/09602011.2011.555972.Corrigan, P. W., & Watson, A. C. (2002). The paradox of self-stigma and mental illness. Clinical Psychology: Science and Practice, 9(1), 35–53. https://doi.org/10.1093/clipsy/9.1.35.Creemers, D. H. M., Scholte, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2012). Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness. Journal of Behavior Therapy and Experimental Psychiatry, 43(1), 638–646. https://doi.org/10.1016/j.jbtep.2011.09.006.Creemers, D. H. M., Scholt, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2013). Damaged self-esteem is associated with internalizing problems. Frontiers in Psychology, 4, 152. https://doi.org/10.3389/fpsyg.2013.00152.Curvis, W., Simpson, J., & Hampson, N. (2018). Factors associated with self-esteem following acquired brain injury in adults: a systematic review. Neuropsychological Rehabilitation, 28(1), 142–183. https://doi.org/10.1080/09602011.2016.1144515.Elbaum, J., & Benson, D. (Eds.). (2007). Acquired brain injury: an integrative neuro-rehabilitation approach. New York: Springer. https://doi.org/10.1007/978-0-387-37575-5.Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.FEDACE. (2015). Las personas con daño cerebral adquirido en España. Ministerio de Sanidad, Servicios Sociales e Igualdad. Retrieved May 21, 2020, from: https://fedace.org/index.php?V_dir=MSC&V_mod=download&f=2016-9/26-16-4-11.admin.Informe_FEDACE_RPD_para_DDC-1.pdf.Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., & Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245–254. https://doi.org/10.1016/S0140-6736(13)61953-4.Fennell, M. J. V. (1997). Low self-esteem: a cognitive perspective. Behavioural and Cognitive Psychotherapy, 25(1), 1–26. https://doi.org/10.1017/s1352465800015368.Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.Garcia-Campayo, J., Navarro-Gil, M., Andrés, E., Montero-Marin, J., López-Artal, L., Marcos, M., & Demarzo, P. (2014). Validation of the Spanish versions of the long (26 items) and short (12 items) forms of the Self-Compassion Scale (SCS). Health and Quality of Life Outcomes, 12(4). https://doi.org/10.1186/1477-7525-12-4.GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2018). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0.Gould, K. R., Ponsford, J. L., Johnston, L., & Schönberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26(1), 79–89. https://doi.org/10.1097/HTR.0b013e3182036799.Gracey, F., Palmer, S., Rous, B., Psaila, K., Shaw, K., O’Dell, J., Cope, J., & Mohamed, S. (2008). “Feeling part of things”: personal construction of self after brain injury. Neuropsychological Rehabilitation, 18(5–6), 627–650. https://doi.org/10.1080/09602010802041238.Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: a “Y-shaped” model. Neuropsychological Rehabilitation, 19(6), 867–890. https://doi.org/10.1080/09602010903027763.Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 1022–1038. https://doi.org/10.1037/0022-3514.79.6.1022.Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464–1480. https://doi.org/10.1037/0022-3514.74.6.1464.Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216. https://doi.org/10.1037/0022-3514.85.2.197.Hackett, M. L., Yapa, C., Parag, V., & Anderson, C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330–1340. https://doi.org/10.1161/01.STR.0000165928.19135.35.Haeffel, G. J., Abramson, L. Y., Brazy, P. C., Shah, J. Y., Teachman, B. A., & Nosek, B. A. (2007). Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression. Behaviour Research and Therapy, 45(6), 1155–1167. https://doi.org/10.1016/j.brat.2006.09.003.Ingram, R. E. (1984). Toward an information-processing analysis of depression. Cognitive Therapy and Research, 8(5), 443–477. https://doi.org/10.1007/BF01173284.Izuma, K., Kennedy, K., Fitzjohn, A., Sedikides, C., & Shibata, K. (2018). Neural activity in the reward-related brain regions predicts implicit self-esteem: a novel validity test of psychological measures using neuroimaging. Journal of Personality and Social Psychology, 114(3), 343–357. https://doi.org/10.1037/pspa0000114.Khan-Bourne, N., & Brown, R. G. (2003). Cognitive behaviour therapy for the treatment of depression in individuals with brain injury. Neuropsychological Rehabilitation, 13(1–2), 89–107. https://doi.org/10.1080/09602010244000318.Kim, H. S., & Moore, M. T. (2019). Symptoms of depression and the discrepancy between implicit and explicit self-esteem. Journal of Behavior Therapy and Experimental Psychiatry, 63, 1–5. https://doi.org/10.1016/j.jbtep.2018.12.001.Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV. What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59–102). New York: The Guildford Press.Leary, M. R., Tate, E. B., Adams, C. E., Batts Allen, A., & Hancock, J. (2007). Self-compassion and reactions to unpleasant self-relevant events: the implications of treating oneself kindly. Personality Processes and Individual Differences, 92(5), 887–904. https://doi.org/10.1037/0022-3514.92.5.887.Lennon, A., Bramham, J., Carroll, À., McElligott, J., Carton, S., Waldron, B., Fortune, D., Burke, T., Fitzhenry, M., & Benson, C. (2014). A qualitative exploration of how individuals reconstruct their sense of self following acquired brain injury in comparison with spinal cord injury. Brain Injury, 28(1), 27–37. https://doi.org/10.3109/02699052.2013.848378.Longworth, C., Deakins, J., Rose, D., & Gracey, F. (2018). The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury. Neuropsychological Rehabilitation, 28(7), 1078–1094. https://doi.org/10.1080/09602011.2016.1226185.MacBeth, A., & Gumley, A. (2012). Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32(6), 545–552. https://doi.org/10.1016/j.cpr.2012.06.003.McDonald, S., Saad, A., & James, C. (2011). Social dysdecorum following severe traumatic brain injury: loss of implicit social knowledge or loss of control? Journal of Clinical and Experimental Neuropsychology, 33(6), 619–630. https://doi.org/10.1080/13803395.2011.553586.Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), 1–6.Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. https://doi.org/10.1037/0033-2909.132.2.297.Muris, P., & Petrocchi, N. (2017). Protection or vulnerability? A meta-analysis of the relations between the positive and negative components of self-compassion and psychopathology. Clinical Psychology & Psychotherapy, 24(2), 373–383. https://doi.org/10.1002/cpp.2005.Myers, R. (2000). Classical and modern regression with applications (2nd ed.). Belmont, CA: Duxbury.Neff, K. D. (2003). Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2(2), 85–101. https://doi.org/10.1080/15298860309032.Neff, K. D., & Vonk, R. (2009). Self-compassion versus global self-esteem: two different ways of relating to oneself. Journal of Personality, 77, 23–50. https://doi.org/10.1111/j.1467-6494.2008.00537.x.Neff, K. D., Tóth-Király, I., Yarnell, L. M., Arimitsu, K., Castilho, P., Ghorbani, N., Guo, H. X., Hirsch, J. K., Hupfeld, J., Hutz, C. S., Kotsou, I., Lee, W. K., Montero-Marin, J., Sirois, F. M., De Souza, L. K., Svendsen, J. L., Wilkinson, R. B., & Mantzios, M. (2019). Examining the factor structure of the Self-Compassion Scale in 20 diverse samples: support for use of a total score and six subscale scores. Psychological Assessment, 31(1), 27–45. https://doi.org/10.1037/pas0000629.Norton, P. J., & Paulus, D. J. (2017). Transdiagnostic models of anxiety disorder: theoretical and empirical underpinnings. Clinical Psychology Review, 56, 122–137. https://doi.org/10.1016/j.cpr.2017.03.004.Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–664. https://doi.org/10.1521/soco.19.6.625.20886.Oddy, M., & Herbert, C. (2003). Intervention with families following brain injury: evidence-based practice. Neuropsychological Rehabilitation, 13(1–2), 259–273. https://doi.org/10.1080/09602010244000345.Ouimet, A. J., Gawronski, B., & Dozois, D. J. A. (2009). Cognitive vulnerability to anxiety: a review and an integrative model. Clinical Psychology Review, 29(6), 459–470. https://doi.org/10.1016/j.cpr.2009.05.004.Ponsford, J., Kelly, A., & Couchman, G. (2014). Self-concept and self-esteem after acquired brain injury: a control group comparison. Brain Injury, 28(2), 146–154. https://doi.org/10.3109/02699052.2013.859733.Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy, 18(3), 250–255. https://doi.org/10.1002/cpp.702.Romero, M., Sánchez, A., Marín, C., Navarro, M. D., Ferri, J., & Noé, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurología (English Edition), 27(4), 216–224. https://doi.org/10.1016/j.nrleng.2011.06.001.Rosenberg, M. (1965). Rosenberg Self-Esteem Scale (RSE). Acceptance and Commitment Therapy. Measures Package, 61, 52 /S0034-98872009000600009.Sandstrom, M. J., & Jordan, R. (2008). Defensive self-esteem and aggression in childhood. Journal of Research in Personality, 42(2), 506–514. https://doi.org/10.1016/j.jrp.2007.07.008.Schönberger, M., & Ponsford, J. (2010). The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury. Psychiatry Research, 179(3), 342–349. https://doi.org/10.1016/j.psychres.2009.07.003.Schröder-Abé, M., Rudolph, A., & Schütz, A. (2007). High implicit self-esteem is not necessarily advantageous: discrepancies between explicit and implicit self-esteem and their relationship with anger expression and psychological health. European Journal of Personality, 21(3), 319–339. https://doi.org/10.1002/per.626.Scoglio, A. A. J., Rudat, D. A., Garvert, D., Jarmolowski, M., Jackson, C., & Herman, J. L. (2018). Self-compassion and responses to trauma: the role of emotion regulation. Journal of Interpersonal Violence, 33(13), 2016–2036. https://doi.org/10.1177/0886260515622296.Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: a systematic review. Clinical Psychology Review, 57, 141–163. https://doi.org/10.1016/j.cpr.2017.09.002.Smeijers, D., Vrijsen, J. N., van Oostrom, I., Isaac, L., Speckens, A., Becker, E. S., & Rinck, M. (2017). Implicit and explicit self-esteem in remitted depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 54, 301–306. https://doi.org/10.1016/j.jbtep.2016.10.006.Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108–131. https://doi.org/10.1207/S15327957PSPR0402_01.Sowislo, J. F., & Orth, U. (2013). Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychological Bulletin, 139(1), 213–240. https://doi.org/10.1037/a0028931.Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220–247. https://doi.org/10.1207/s15327957pspr0803_1.Terol-Cantero, M. C., Cabrera-Perona, V., & Martín-Aragón, M. (2015). Hospital Anxiety and Depression Scale (HADS) review in Spanish samples. Anales de Psicología, 31(2), 494–503. https://doi.org/10.6018/analesps.31.2.172701.Tóth-Király, I., & Neff, K. D. (2020). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment. Advance online publication. https://doi.org/10.1177/1073191120926232.Turner-Stokes, L., & Wade, D. (2003). Rehabilitation following acquired brain injury: National Clinical Guidelines. Clinical Medicine, 4(1), 61–65. https://doi.org/10.7861/clinmedicine.4-1-61.Tyerman, A., & Humphrey, M. (1984). Changes in self-concept following severe head injury. International Journal of Rehabilitation Research, 7(1), 11–23. https://doi.org/10.1097/00004356-198403000-00002.Valiente, C., Cantero, D., Vázquez, C., Sanchez, Á., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691–699. https://doi.org/10.1037/a0022856.Vickery, C. D., Sepehri, A., & Evans, C. C. (2008). Self-esteem in an acute stroke rehabilitation sample: a control group comparison. Clinical Rehabilitation, 22(2), 179–187. https://doi.org/10.1177/0269215507080142.Whelan-Goodinson, R., Ponsford, J., & Schönberger, M. (2009). Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. Journal of Affective Disorders, 114(1–3), 94–102. https://doi.org/10.1016/j.jad.2008.06.007.Zeigler-Hill, V. (2006). Discrepancies between implicit and explicit self-esteem: Implications for narcissism and self-esteem instability. Journal of Personality, 74(1), 119–144. https://doi.org/10.1111/j.1467-6494.2005.00371.x.Zessin, U., Dickhäuser, O., & Garbade, S. (2015). The relationship between self-compassion and well-being: a meta-analysis. Applied Psychology. Health and Well-Being, 7(3), 340–364. https://doi.org/10.1111/aphw.12051.Zhang, J. W., Chen, S., & Tomova Shakur, T. K. (2020). From me to you: Self-compassion predicts acceptance of own and others’ imperfections. Personality and Social Psychology Bulletin, 46(2), 228–242. https://doi.org/10.1177/0146167219853846.Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Age-Dependent Targeting of Protein Phosphatase 1 to Ca2+/Calmodulin-Dependent Protein Kinase II by Spinophilin in Mouse Striatum

    Get PDF
    Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging

    Proteomic Modeling for HIV-1 Infected Microglia-Astrocyte Crosstalk

    Get PDF
    Background: HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system’s microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease. Methods and Findings: MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species. Conclusions: These observations provide unique insights into glial crosstalk during disease by supporting astrocytemediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery an

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore