567 research outputs found

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    A murine model of ulcerative colitis: induced with sinusitis-derived superantigen and food allergen

    Get PDF
    BACKGROUND: The etiology of ulcerative colitis (UC) is to be understood. The basic pathological feature of UC is intestinal chronic inflammation. Superantigen, such as Staphylococcus enterotoxin B (SEB), is reported to compromise intestinal barrier function by increasing epithelial permeability and initiate inflammation in the intestinal mucosa. Inasmuch as anatomic position of the sinus, chronic sinusitis-derived SEB may follow the secretion and to be swallowed down to the gastrointestinal tract and induce lesions to the intestinal mucosa. METHODS: Sinus wash fluid (SWF, containing SEB) was collected from a group of patients with both chronic sinusitis (CS) and UC. A group of mice were sensitized to ovalbumin (OVA) in the presence of SWF. The sensitized mice were challenged with the specific antigen OVA. The inflammatory status of the colonic tissue was determined with histology, serology and electron microscopy. Using horseradish peroxidase (HRP) as a tracer, another group of mice was stimulated with SWF for 2 hours. The HRP activity was detected in the colonic tissue with enzymatic approaches and electron microscopy. RESULTS: Epithelial hyperpermeability in colonic epithelium was induced by stimulating with SWF. The HRP activity in the colonic mucosa was almost 11 times more in the SWF treated group (3.2 ± 0.6 μg/g tissue) than the control group (0.3 ± 0.1 μg/g tissue). Mice were sensitized using a mixture of SWF and OVA (serum OVA-specific IgE was detected with a highest titer as 1:64). Challenge with OVA induced extensive inflammation in the colonic mucosa by showing (1) marked degranulation in mast cells (MC, 46.3 ± 4.5%) and eosinophils (Eo, 55.7 ± 4.2%); (2) inflammatory cell infiltration (MC = 145.2 ± 11.4; Eo = 215.8 ± 12.5; mononuclear cell = 258.4 ± 15.3/mm(2 )tissue); (3) increased MPO activity (12.9 ± 3.2 U/g tissue) and inflammatory scores (1.8 ± 0.3); (4) mucosal surface ulcers; (5) edema in the lamina propria; (6) bacterial translocation and abscess formation in the subepithelial region. CONCLUSION: Introducing Sinusitis-derived SEB-containing SWF to the gastrointestinal tract compromised colonic mucosal barrier function increasing epithelial permeability to luminal macromolecular protein in mice. The SWF facilitated colonic mucosal sensitization to luminal antigen. Multiple challenging the sensitized colonic mucosa with specific antigen OVA induced inflammation, induced a condition similar to human ulcerative colitis

    Fabrication and Properties of Porphyrin Nano- and Micro-particles with Novel Morphology

    Get PDF
    New types of porphyrin nano- and micro-particles composed of J- and H-heteroaggregates were prepared by electrostatic self-assembly of two oppositely charged porphyrins, tetrakis(4-trimethylammoniophenyl)porphyrin (H2TAPP4+) and tetrakis(4-sulfonatophenyl)porphyrin cobalt(II) (CoTPPS4−), in aqueous solutions. Transmission electron microscopy (TEM) images showed novel morphology and size distribution of porphyrin particles fabricated under different experimental conditions. The assembly process of the nano- and micro-particles was monitored by UV–Vis spectra. Fluorescence spectra and UV–Vis spectra provided optical information on the formation of the nano- and micro-particles. Cyclic voltammograms of the porphyrin particles indicated that the electron gain and loss of the H2TAPP4+ion were restrained, and the electron transfer of the CoTPPS4−ion was promoted in the J- and H-type porphyrin heteroaggregates within the particles. The stability and constitution of the nano- and micro-particles were confirmed by UV-light irradiation, heat-treatment, and pH and ionic strength changes. Photoelectrochemical measurements showed that the photoelectron transfer of TiO2modified with the particles was more efficient than that of TiO2sensitized by either monomers. The photoelectronic and photocatalytic properties of the products indicated that the pyramidal or spherical configuration of the nano- and micro-particles was favorable for the absorption and transfer of the energy. It can be found that TiO2sensitized by the porphyrin nano- and micro-particles exhibits significant improvement in energy conversion and photocatalytic activity with reference to pure TiO2

    The Retrograde IFT Machinery of C. elegans Cilia: Two IFT Dynein Complexes?

    Get PDF
    We analyzed the relatively poorly understood IFT-dynein (class DYNC2)-driven retrograde IFT pathway in C. elegans cilia, which yielded results that are surprising in the context of current models of IFT. Assays of C. elegans dynein gene expression and intraflagellar transport (IFT) suggest that conventional IFT-dynein contains essential heavy (CHE-3), light-intermediate (XBX-1), plus three light polypeptide chains that participate in IFT, but no “essential” intermediate chain. IFT assays of XBX-1::YFP suggest that IFT-dynein is transported as cargo to the distal tip of the cilium by kinesin-2 motors, but independent of the IFT-particle/BBSome complexes. Finally, we were surprised to find that the subset of cilia present on the OLQ (outer labial quadrant) neurons assemble independently of conventional “CHE-3” IFT-dynein, implying that there is a second IFT-dynein acting in these cilia. We have found a novel gene encoding a dynein heavy chain, DHC-3, and two light chains, in OLQ neurons, which could constitute an IFT-dynein complex in OLQ neuronal cilia. Our results underscore several surprising features of retrograde IFT that require clarification

    Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Get PDF
    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore