123 research outputs found
Herb-Drug Pharmacokinetic Interaction of a Traditional Chinese Medicine Jia-Wei-Xiao-Yao-San with 5-Fluorouracil in the Blood and Brain of Rat Using Microdialysis
According to a survey from the National Health Insurance Research Database (NHIRD), Jia-Wei-Xiao-Yao-San (JWXYS) is the most popular Chinese medicine for cancer patients in Taiwan. 5-Fluorouracil (5-FU) is a general anticancer drug for the chemotherapy. To investigate the herb-drug interaction of JWXYS on pharmacokinetics of 5-FU, a microdialysis technique coupled with a high-performance liquid chromatography system was used to monitor 5-FU in rat blood and brain. Rats were divided into four parallel groups, one of which was treated with 5-FU (100 mg/kg, i.v.) alone and the remaining three groups were pretreated with a different dose of JWXYS (600, 1200, or 2400 mg/kg/day for 5 consecutive days) followed by a combination with 5-FU. This study demonstrates that 5-FU with JWXYS (600 mg/kg/day or 1200 mg/kg/day) has no significant effect on the pharmacokinetics of 5-FU in the blood and brain. However, JWXYS (2400 mg/kg/day) coadministered with 5-FU extends the elimination half-life and increases the volume of distribution of 5-FU in the blood. The elimination half-life of 5-FU in the brain for the pretreatment group with 2400 mg/kg/day of JWXYS is significantly longer than that for the group treated with 5-FU alone and also reduces the clearance. This study provides practical dosage information for clinical practice and proves the safety of 5-FU coadministered with JWXYS
Effects of Acupuncture at Neiguan (PC 6) on Electroencephalogram
Abstract The aim of this study was to investigate if there were any effects on the electroencephalogram (EEG) of human brain by the manual stimulation of Neiguan (PC 6) acupuncture site. In this paper, two groups of six healthy male volunteers of ages 27.6 ± 14.2 (mean ± SD) and 28.5 ± 13.0 (mean ± SD) and no neurological disease participated in this study. A digital storage of 12-channel EEG recorder was used and spectral analyses of the data set of 18 trials were obtained before, during, and after sham/ manual acupuncture. To minimize artefacts, all data were collected with the subjects alert but eyes closed. No significant changes (P > 0.05) were obtained for the sham acupuncture group. As for the manual acupuncture group, the needle was inserted perpendicularly into the PC 6 acupuncture site and manually stimulated about 15 to 30 seconds to achieve De Qi sensation. Needles were left in place for 30 min and then removed. Analysis of the EEG data due to acupuncture was compared to the baseline data and changes were obtained. First, all trials had an increase in the amplitude and power of the alpha band during manual acupuncture (P < 0.05) when compared with the baseline data. Secondly, in the mean time, the frequency peaks in alpha band of 12-channels were all synchronized with much smaller standard deviation (P < 0.01). Thirdly, the manual acupuncture effects of higher power and synchronized frequencies persisted for at least 10 minutes after the experiment (P < 0.05) and did not disappear immediately for all 18 experiments. Finally, we hypothesized that the higher power and synchronized rhythms in brain oscillations may have to do with autonomic nervous system
Evaluating Self-supervised Speech Models on a Taiwanese Hokkien Corpus
Taiwanese Hokkien is declining in use and status due to a language shift
towards Mandarin in Taiwan. This is partly why it is a low resource language in
NLP and speech research today. To ensure that the state of the art in speech
processing does not leave Taiwanese Hokkien behind, we contribute a 1.5-hour
dataset of Taiwanese Hokkien to ML-SUPERB's hidden set. Evaluating ML-SUPERB's
suite of self-supervised learning (SSL) speech representations on our dataset,
we find that model size does not consistently determine performance. In fact,
certain smaller models outperform larger ones. Furthermore, linguistic
alignment between pretraining data and the target language plays a crucial
role.Comment: Accepted to ASRU 202
Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review
Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite
Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates
BACKGROUND: Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. CONCLUSION: These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials
Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan
AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys
This is the published version. Copyright 2012 Royal Society of ChemistryAmorphous alloys structurally deviate from crystalline materials in that they possess unique short-range ordered and long-range disordered atomic arrangement. They are important catalytic materials due to their unique chemical and structural properties including broadly adjustable composition, structural homogeneity, and high concentration of coordinatively unsaturated sites. As chemically reduced metal–metalloid amorphous alloys exhibit excellent catalytic performance in applications such as efficient chemical production, energy conversion, and environmental remediation, there is an intense surge in interest in using them as catalytic materials. This critical review summarizes the progress in the study of the metal–metalloid amorphous alloy catalysts, mainly in recent decades, with special focus on their synthetic strategies and catalytic applications in petrochemical, fine chemical, energy, and environmental relevant reactions. The review is intended to be a valuable resource to researchers interested in these exciting catalytic materials. We concluded the review with some perspectives on the challenges and opportunities about the future developments of metal–metalloid amorphous alloy catalysts
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at √s=13 TeV with the ATLAS detector
This article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb−1 of pp collisions at √s=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level
- …