525 research outputs found

    Dual black holes in merger remnants. II: spin evolution and gravitational recoil

    Full text link
    Using high resolution hydrodynamical simulations, we explore the spin evolution of massive dual black holes orbiting inside a circumnuclear disc, relic of a gas-rich galaxy merger. The black holes spiral inwards from initially eccentric co or counter-rotating coplanar orbits relative to the disc's rotation, and accrete gas that is carrying a net angular momentum. As the black hole mass grows, its spin changes in strength and direction due to its gravito-magnetic coupling with the small-scale accretion disc. We find that the black hole spins loose memory of their initial orientation, as accretion torques suffice to align the spins with the angular momentum of their orbit on a short timescale (<1-2 Myr). A residual off-set in the spin direction relative to the orbital angular momentum remains, at the level of <10 degrees for the case of a cold disc, and <30 degrees for a warmer disc. Alignment in a cooler disc is more effective due to the higher coherence of the accretion flow near each black hole that reflects the large-scale coherence of the disc's rotation. If the massive black holes coalesce preserving the spin directions set after formation of a Keplerian binary, the relic black hole resulting from their coalescence receives a relatively small gravitational recoil. The distribution of recoil velocities inferred from a simulated sample of massive black hole binaries has median <70 km/s much smaller than the median resulting from an isotropic distribution of spins.Comment: 11 pages, 3 figures. Accepted for publication in MNRA

    Astro2010 Decadal Survey Whitepaper: Coordinated Science in the Gravitational and Electromagnetic Skies

    Full text link
    It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?Comment: 7 pages (plus one coverpage), submitted to the US Astro2010 Decadal Survey. This is a living document, with updates expected to be posted to this archive. Those interested in contributing should contact J. S. Bloo

    The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    Full text link
    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201

    Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence

    Full text link
    A precise electromagnetic measurement of the sky coordinates and redshift of a coalescing black hole binary holds the key for using its gravitational wave (GW) signal to constrain cosmological parameters and to test general relativity. Here we show that the merger of ~10^{6-7}M_sun black holes is generically followed over a period of years by multiple electromagnetic flares from tidally disrupted stars. The sudden recoil imparted to the merged black hole by GW emission promptly fills its loss cone and results in a tidal disruption rate of stars as high as ~0.1 per year. The prompt disruption of a star within a single galaxy over a short period provides a unique electromagnetic flag of a recent black hole coalescence event, and sequential disruptions could be used on their own to calibrate the expected rate of GW sources for pulsar timing arrays or the proposed Laser Interferometer Space Antenna (LISA).Comment: 6 pages, 3 figure

    The evolution of massive black holes and their spins in their galactic hosts

    Full text link
    [Abridged] [...] We study the mass and spin evolution of massive black holes within a semianalytical galaxy-formation model that follows the evolution of dark-matter halos along merger trees, as well as that of the baryonic components (hot gas, stellar and gaseous bulges, and stellar and gaseous galactic disks). This allows us to study the mass and spin evolution of massive black holes in a self-consistent way, by taking into account the effect of the gas present in galactic nuclei both during the accretion phases and during mergers. Also, we present predictions, as a function of redshift, for the fraction of gas-rich black-hole mergers -- in which the spins prior to the merger are aligned due to the gravito-magnetic torques exerted by the circumbinary disk -- as opposed to gas-poor mergers, in which the orientation of the spins before the merger is roughly isotropic. These predictions may be tested by LISA or similar spaced-based gravitational-wave detectors such as eLISA/NGO or SGO.Comment: 26 pages, 15 figures. This version includes minor changes to figs 10 and 11 (left-hand panels) described in erratum (MNRAS 440, 1295, 2014, doi: 10.1093/mnras/stu361), see also http://www2.iap.fr/users/barausse/erratum.pd

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ~ 9 and ~ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.Peer Reviewe

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore