4,702 research outputs found

    Galaxy Evolution: Modeling the Role of Non-thermal Pressure in the Interstellar medium

    Full text link
    Galaxy evolution depends strongly on the physics of the interstellar medium (ISM). Motivated by the need to incorporate the properties of the ISM in cosmological simulations we construct a simple method to include the contribution of non-thermal components in the calculation of pressure of interstellar gas. In our method we treat three non-thermal components - turbulence, magnetic fields and cosmic rays - and effectively parametrize their amplitude. We assume that the three components settle into a quasi-steady-state that is governed by the star formation rate, and calibrate their magnitude and density dependence by the observed Radio-FIR correlation, relating synchrotron radiation to star formation rates of galaxies. We implement our model in single cell numerical simulation of a parcel of gas with constant pressure boundary conditions and demonstrate its effect and potential. Then, the non-thermal pressure model is incorporated into RAMSES and hydrodynamic simulations of isolated galaxies with and without the non-thermal pressure model are presented and studied. Specifically, we demonstrate that the inclusion of realistic non-thermal pressure reduces the star formation rate by an order of magnitude and increases the gas depletion time by as much. We conclude that the non-thermal pressure can prolong the star formation epoch and achieve consistency with observations without invoking artificially strong stellar feedback.Comment: 18 pages, 14 figures, accepted to MNRAS. Updated to match final versio

    Instability of Supersonic Cold Streams Feeding Galaxies II. Nonlinear Evolution of Surface and Body Modes of Kelvin-Helmholtz Instability

    Get PDF
    As part of our long-term campaign to understand how cold streams feed massive galaxies at high redshift, we study the Kelvin-Helmholtz instability (KHI) of a supersonic, cold, dense gas stream as it penetrates through a hot, dilute circumgalactic medium (CGM). A linear analysis (Paper I) showed that, for realistic conditions, KHI may produce nonlinear perturbations to the stream during infall. Therefore, we proceed here to study the nonlinear stage of KHI, still limited to a two-dimensional slab with no radiative cooling or gravity. Using analytic models and numerical simulations, we examine stream breakup, deceleration and heating via surface modes and body modes. The relevant parameters are the density contrast between stream and CGM (δ\delta), the Mach number of the stream velocity with respect to the CGM (MbM_{\rm b}) and the stream radius relative to the halo virial radius (Rs/RvR_{\rm s}/R_{\rm v}). We find that sufficiently thin streams disintegrate prior to reaching the central galaxy. The condition for breakup ranges from Rs<0.03RvR_{\rm s} < 0.03 R_{\rm v} for (Mb∼0.75,δ∼10)(M_{\rm b} \sim 0.75, \delta \sim 10) to Rs<0.003RvR_{\rm s} < 0.003 R_{\rm v} for (Mb∼2.25,δ∼100)(M_{\rm b} \sim 2.25, \delta \sim 100). However, due to the large stream inertia, KHI has only a small effect on the stream inflow rate and a small contribution to heating and subsequent Lyman-α\alpha cooling emission.Comment: The main astrophysical results are Figure 22 and Figure 23. Final 7 pages are appendices. Accepted to MNRA

    Gravitational Quenching by Clumpy Accretion in Cool Core Clusters: Convective Dynamical Response to Overheating

    Full text link
    Many galaxy clusters pose a "cooling-flow problem", where the observed X-ray emission from their cores is not accompanied by enough cold gas or star formation. A continuous energy source is required to balance the cooling rate over the whole core volume. We address the feasibility of a gravitational heating mechanism, utilizing the gravitational energy released by the gas that streams into the potential well of the cluster dark-matter halo. We focus here on a specific form of gravitational heating in which the energy is transferred to the medium thorough the drag exerted on inflowing gas clumps. Using spheri-symmetric hydro simulations with a subgrid representation of these clumps, we confirm our earlier estimates that in haloes >=10^13 solar masses the gravitational heating is more efficient than the cooling everywhere. The worry was that this could overheat the core and generate an instability that might push it away from equilibrium. However, we find that the overheating does not change the global halo properties, and that convection can stabilize the cluster by carrying energy away from the overheated core. In a typical rich cluster of 10^{14-15}solar masses, with ~5% of the accreted baryons in gas clumps of ~10^8 solar masses, we derive upper and lower limits for the temperature and entropy profiles and show that they are consistent with those observed in cool-core clusters. We predict the density and mass of cold gas and the level of turbulence driven by the clump accretion. We conclude that gravitational heating is a feasible mechanism for preventing cooling flows in clusters.Comment: 16 pages, 7 figures, accepted by MNRA
    • …
    corecore