52 research outputs found

    Analysis of conditional gene deletion using probe based Real-Time PCR

    Get PDF
    Following publication of this article [1] the authors noticed that an incorrect probe reference was cited on page 3, 4, 5 and 6 ("UP #69, Roche Applied Science"). The correct probe that was used for the 1lox/2lox allele ratio analysis in the paper is as follow

    Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers

    Get PDF
    CITATION: Esterhuyse, M. M. et al. 2015. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. mBio, 6(5):e01187-15, doi:10.1128/mBio.01187-15.The original publication is available at http://mbio.asm.orgAn estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type.http://mbio.asm.org/content/6/5/e01187-15.abstract?sid=fe0ea1c7-6da2-4e53-b4a4-5cd8233777c7Publisher's versio

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Critères de sélection pour le choix des variables dans l’analyse de régression

    No full text
    Pas de résumé disponible.</p

    Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer

    No full text
    Human cancer cells frequently have regions of their DNA hypermethylated, which results in transcriptional silencing of affected genes and promotion of tumor formation. However, it is still unknown whether cancer-associated aberrant DNA methylation is targeted to specific genomic regions, whether this methylation also occurs in noncancerous cells, and whether these epigenetic events are maintained in the absence of the initiating cause. Here we have addressed some of these issues by demonstrating that transgenic expression of DNA methyltransferase 3b (Dnmt3b) in the mouse colon initiates de novo DNA methylation of genes that are similar to genes that become methylated in human colon cancer. This is consistent with the notion that aberrant methylation in cancer may be attributable to targeting of specific sequences by Dnmt3b rather than to random methylation followed by clonal selection. We also showed that Dnmt3b-induced aberrant DNA methylation was maintained in regenerating tissue, even in the absence of continuous Dnmt3b expression. This supports the concept that transient stressors can cause permanent epigenetic changes in somatic stem cells and that these accumulate over the lifetime of an organism in analogy to DNA mutations

    Gene flow from foreign provenances into local plant populations: Fitness consequences and implications for biodiversity restoration

    Get PDF
    Long-distance transplantation of seed material as done in restoration programs has raised concerns about the risks associated with the introduction of maladapted genotypes that may hybridize with neighboring native conspecifics and decrease local population fitness (outbreeding depression). We studied the consequences of gene flow from foreign provenances into local populations in the common grassland species Plantago lanceolata (Plantaginaceae). Three generations of intraspecific hybrids (F1, F2, and backcross to the local plants) were produced by controlled crossings between local plants and plants from geographically or environmentally distant populations. Their performance was compared to that of within-population crosses in a field experiment. Early growth in some interpopulation hybrids was significantly reduced, and this decrease in performance was higher in progeny of crosses with the local population from a different habitat than with geographically distant populations. At the end of the growing season, most fitness-related traits of the interpopulation hybrids were close to the average of their parents. Crosses with low-performing foreign parents therefore resulted in reduced fitness of the hybrids compared to the local plants and dilution of local adaptation. We conclude that the introduction of maladapted populations from distant or ecologically distinct environments might, at least temporarily, decrease the fitness of neighboring local plants

    Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing

    No full text
    Increased methylation of CpG islands and silencing of affected target genes is frequently found in human cancer; however, in vivo the question of causality has only been addressed by loss-of-function studies. To directly evaluate the role and mechanism of de novo methylation in tumor development, we overexpressed the de novo DNA methyltransferases Dnmt3a1 and Dnmt3b1 in ApcMin/+ mice. We found that Dnmt3b1 enhanced the number of colon tumors in ApcMin/+ mice approximately twofold and increased the average size of colonic microadenomas, whereas Dnmt3a1 had no effect. The overexpression of Dnmt3b1 caused loss of imprinting and increased expression of Igf2 as well as methylation and transcriptional silencing of the tumor suppressor genes Sfrp2, Sfrp4, and Sfrp5. Importantly, we found that Dnmt3b1 but not Dnmt3a1 efficiently methylates the same set of genes in tumors and in nontumor tissues, demonstrating that de novo methyltransferases can initiate methylation and silencing of specific genes in phenotypically normal cells. This suggests that DNA methylation patterns in cancer are the result of specific targeting of at least some tumor suppressor genes rather than of random, stochastic methylation followed by clonal selection due to a proliferative advantage caused by tumor suppressor gene silencing
    corecore