2,519 research outputs found

    Optimized energy calculation in lattice systems with long-range interactions

    Full text link
    We discuss an efficient approach to the calculation of the internal energy in numerical simulations of spin systems with long-range interactions. Although, since the introduction of the Luijten-Bl\"ote algorithm, Monte Carlo simulations of these systems no longer pose a fundamental problem, the energy calculation is still an O(N^2) problem for systems of size N. We show how this can be reduced to an O(N logN) problem, with a break-even point that is already reached for very small systems. This allows the study of a variety of, until now hardly accessible, physical aspects of these systems. In particular, we combine the optimized energy calculation with histogram interpolation methods to investigate the specific heat of the Ising model and the first-order regime of the three-state Potts model with long-range interactions.Comment: 10 pages, including 8 EPS figures. To appear in Phys. Rev. E. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice

    Full text link
    Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurate description of the crossover function for the susceptibility.Comment: 4 pages RevTeX + 3 PostScript figures. Uses epsf.sty and rotate.sty. Final version; accepted for publication in Physics Letters

    Nature of crossover from classical to Ising-like critical behavior

    Full text link
    We present an accurate numerical determination of the crossover from classical to Ising-like critical behavior upon approach of the critical point in three-dimensional systems. The possibility to vary the Ginzburg number in our simulations allows us to cover the entire crossover region. We employ these results to scrutinize several semi-phenomenological crossover scaling functions that are widely used for the analysis of experimental results. In addition we present strong evidence that the exponent relations do not hold between effective exponents.Comment: 4 pages RevTeX 3.0/3.1, 4 Encapsulated PostScript figures. Uses epsf.sty. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Large-N_f chiral transition in the Yukawa model

    Full text link
    We investigate the finite-temperature behavior of the Yukawa model in which NfN_{f} fermions are coupled with a scalar field ϕ\phi in the limit Nf→∞N_f \to \infty. Close to the chiral transition the model shows a crossover between mean-field behavior (observed for Nf=∞N_f = \infty) and Ising behavior (observed for any finite NfN_f). We show that this crossover is universal and related to that observed in the weakly-coupled ϕ4\phi^4 theory. It corresponds to the renormalization-group flow from the unstable Gaussian fixed point to the stable Ising fixed point. This equivalence allows us to use results obtained in field theory and in medium-range spin models to compute Yukawa correlation functions in the crossover regime

    Geometric Cluster Algorithm for Interacting Fluids

    Full text link
    We discuss a new Monte Carlo algorithm for the simulation of complex fluids. This algorithm employs geometric operations to identify clusters of particles that can be moved in a rejection-free way. It is demonstrated that this geometric cluster algorithm (GCA) constitutes the continuum generalization of the Swendsen-Wang and Wolff cluster algorithms for spin systems. Because of its nonlocal nature, it is particularly well suited for the simulation of fluid systems containing particles of widely varying sizes. The efficiency improvement with respect to conventional simulation algorithms is a rapidly growing function of the size asymmetry between the constituents of the system. We study the cluster-size distribution for a Lennard-Jones fluid as a function of density and temperature and provide a comparison between the generalized GCA and the hard-core GCA for a size-asymmetric mixture with Yukawa-type couplings.Comment: To appear in "Computer Simulation Studies in Condensed-Matter Physics XVII". Edited by D.P. Landau, S.P. Lewis and H.B. Schuettler. Springer, Heidelberg, 200

    Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems

    Full text link
    Accurate numerical results are presented for the three-dimensional equivalent-neighbor model on a cubic lattice, for twelve different interaction ranges (coordination number between 18 and 250). These results allow the determination of the range dependences of the critical temperature and various critical amplitudes, which are compared to renormalization-group predictions. In addition, the analysis yields an estimate for the interaction range at which the leading corrections to scaling vanish for the spin-1/2 model and confirms earlier conclusions that the leading Wegner correction must be negative for the three-dimensional (nearest-neighbor) Ising model. By complementing these results with Monte Carlo data for systems with coordination numbers as large as 52514, the full finite-size crossover curves between classical and Ising-like behavior are obtained as a function of a generalized Ginzburg parameter. Also the crossover function for the effective magnetic exponent is determined.Comment: Corrected shift of critical temperature and some typos. To appear in Phys. Rev. E. 18 pages RevTeX, including 10 EPS figures. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm
    • …
    corecore