11 research outputs found

    Differential regulation of drug transporter expression by all-trans retinoic acid in hepatoma HepaRG cells and human hepatocytes

    Full text link
    All-trans retinoic acid (atRA) is the active form of vitamin A, known to activate retinoid receptors, especially the heterodimer retinoid X receptor (RXR):retinoic acid receptor (RAR) that otherwise may play a role in regulation of some drug transporters. The present study was designed to characterize the nature of human hepatic transporters that may be targeted by atRA and the heterodimer RXR:RAR. Exposure of human hepatoma HepaRG cells and primary human hepatocytes to 5μM atRA down-regulated mRNA levels of various sinusoidal solute carrier (SLC) influx transporters, including organic anion transporting polypeptide (OATP) 2B1, OATP1B1, organic cation transporter (OCT) 1 and organic anion transporter (OAT) 2, and induced those of the canalicular breast cancer resistance protein (BCRP). The retinoid concomitantly reduced protein expression of OATP2B1 and OATP1B1 and activity of OATPs and OCT1 and induced BCRP protein expression in HepaRG cells. Some transporters such as OATP1B3 and the bile salt export pump (BSEP) were however down-regulated by atRA in primary human hepatocytes, but induced in HepaRG cells, thus pointing out discrepancies between these two liver cell models in terms of detoxifying protein regulation. atRA-mediated repressions of OATP2B1, OATP1B1, OAT2 and OCT1 mRNA expression were finally shown to be counteracted by knocking-down expression of RARα and RXRα through siRNA transfection in HepaRG cells. atRA thus differentially regulated human hepatic drug transporters, mainly in a RXR:RAR-dependent manner, therefore establishing retinoids and retinoid receptors as modulators of liver drug transporter expression

    Clinical and in vitro

    No full text
    Treatment of infections caused by Burkholderia cepacia complex (Bcc) in cystic fibrosis (CF) patients poses a complex problem. Bcc is multidrug-resistant due to innate and acquired mechanisms of resistance. As CF patients receive multiple courses of antibiotics, susceptibility patterns of strains from CF patients may differ from those noted in strains from non-CF patients. Thus, there was a need for assessing in vitro and clinical data to guide antimicrobial therapy in these patients. A systematic search of literature, followed by extraction and analysis of available information from human and in vitro studies was done. The results of the analysis are used to address various aspects like use of antimicrobials for pulmonary and non-pulmonary infections, use of combination versus monotherapy, early eradication, duration of therapy, route of administration, management of biofilms, development of resistance during therapy, pharmacokinetics–pharmacodynamics correlations, therapy in post-transplant patients and newer drugs in Bcc-infected CF patients

    Electrolyte abnormalities in cystic fibrosis: systematic review of the literature

    No full text

    Retinoic acid receptors: From molecular mechanisms to cancer therapy

    No full text
    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported

    Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation

    No full text

    Retinoic acid receptors: From molecular mechanisms to cancer therapy

    No full text
    corecore