16 research outputs found

    Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS: Structured exercise is considered a cornerstone in type 2 diabetes treatment. However, adherence to combined resistance and endurance type exercise or medical fitness intervention programmes is generally poor. Group-based brisk walking may represent an attractive alternative, but its long-term efficacy as compared with an individualised approach such as medical fitness intervention programmes is unknown. We compared the clinical benefits of a 12-month exercise intervention programme consisting of either brisk walking or a medical fitness programme in type 2 diabetes patients. METHODS: We randomised 92 type 2 diabetes patients (60 +/- 9 years old) to either three times a week of 60 min brisk walking (n = 49) or medical fitness programme (n = 43). Primary outcome was the difference in changes in HbA1c values at 12 months. Secondary outcomes were differences in changes in blood pressure, plasma lipid concentrations, insulin sensitivity, body composition, physical fitness, programme adherence rate and health-related quality of life. RESULTS: After 12 months, 18 brisk walking and 19 medical fitness participants were still actively participating. In both programmes, 50 and 25% of the dropout was attributed to overuse injuries and lack of motivation, respectively. Intention-to-treat analyses showed no important differences between brisk walking and medical fitness programme in primary or secondary outcome variables. CONCLUSIONS/INTERPRETATION: The prescription of group-based brisk walking represents an equally effective intervention to modulate glycaemic control and cardiovascular risk profile in type 2 diabetes patients when compared with more individualised medical fitness programmes. Future exercise intervention programmes should anticipate the high attrition rate due to overuse injuries and motivation problems

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Uncovering heart failure with preserved ejection fraction in patients with type 2 diabetes in primary care : Time for a change

    Get PDF
    Undetected heart failure appears to be an important health problem in patients with type 2 diabetes and aged ≄ 60 years. The prevalence of previously unknown heart failure in these patients is high, steeply rises with age, and is overall higher in women than in men. The majority of the patients with newly detected heart failure have a preserved ejection fraction. A diagnostic algorithm to detect or exclude heart failure in these patients with variables from the medical files combined with items from history taking and physical examination provides a good to excellent accuracy. Annual screening appears to be cost-effective. Both unrecognised heart failure with reduced and with preserved ejection fraction were associated with a clinically relevant lower health status in patients with type 2 diabetes. Also the prognosis of these patients was worse than of those without heart failure. Existing disease-management programs for type 2 diabetes pay insufficient attention to early detection of cardiovascular diseases, including heart failure. We conclude that more attention is needed for detection of heart failure in older patients with type 2 diabetes
    corecore