137 research outputs found

    Pre-sleep feeding, sleep quality, and markers of recovery in division I NCAA female soccer players

    Get PDF
    Pre-sleep nutrition habits in elite female athletes have yet to be evaluated. A retrospective analysis was performed with 14 NCAA Division I female soccer players who wore a WHOOP, Inc. band – a wearable device that quantifies recovery by measuring sleep, activity, and heart rate metrics through actigraphy and photoplethysmography, respectively – 24 h a day for an entire competitive season to measure sleep and recovery. Pre-sleep food consumption data were collected via surveys every 3 days. Average pre-sleep nutritional intake (mean ± sd: kcals 330 ± 284; cho 46.2 ± 40.5 g; pro 7.6 ± 7.3 g; fat 12 ± 10.5 g) was recorded. Macronutrients and kcals were grouped into high and low categories based upon the 50th percentile of the mean to compare the impact of a high versus low pre-sleep intake on sleep and recovery variables. Sleep duration (p = 0.10, 0.69, 0.16, 0.17) and sleep disturbances (p = 0.42, 0.65, 0.81, 0.81) were not affected by high versus low kcal, PRO, fat, CHO intake, respectively. Recovery (p = 0.81, 0.06, 0.81, 0.92), RHR (p = 0.84, 0.64, 0.26, 0.66), or HRV (p = 0.84, 0.70, 0.76, 0.93) were also not affected by high versus low kcal, PRO, fat, or CHO consumption, respectively. Consuming a small meal before bed may have no impact on sleep or recovery

    Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    Get PDF
    Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement.Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms.Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%).Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim

    Identification of New Hematopoietic Cell Subsets with a Polyclonal Antibody Library Specific for Neglected Proteins

    Get PDF
    The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs

    phi-Meson production at forward rapidity in p-Pb collisions at root s(NN)=5.02 TeV and in pp collisions at root s=2.76 TeV

    Get PDF
    The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 <p(T) <7GeV/c, both in the p-going (2.03 <y <3.53) and the Pb-going (-4.46 <y <-2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96Peer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    Peer reviewe
    corecore