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Host-mediated lung inflammation is present,1 and drives mortality,2 in critical illness 66 
caused by Covid-19. Host genetic variants associated with critical illness may identify 67 
mechanistic targets for therapeutic development.3 68 
Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) 69 
genome-wide association study(GWAS) in 2244 critically ill Covid-19 patients from 70 
208 UK intensive care units (ICUs). 71 
We identify and replicate novel genome-wide significant associations, on 72 
chr12q24.13 (rs10735079, p=1.65 × 10-8) in a gene cluster encoding antiviral 73 
restriction enzyme activators (OAS1, OAS2, OAS3), on chr19p13.2 (rs2109069, p=2.3 74 × 10-12) near the gene encoding tyrosine kinase 2 (TYK2), on chr19p13.3 75 
(rs2109069, p=3.98 × 10-12) within the gene encoding dipeptidyl peptidase 9 (DPP9), 76 
and on chr21q22.1 (rs2236757, p=4.99 × 10-8) in the interferon receptor gene 77 
IFNAR2. 78 
We identify potential targets for repurposing of licensed medications: using 79 
Mendelian randomisation we found evidence in support of a causal link from low 80 
expression of IFNAR2, and high expression of TYK2, to life-threatening disease; 81 
transcriptome-wide association in lung tissue revealed that high expression of the 82 



monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-83 
19. 84 
Our results identify robust genetic signals relating to key host antiviral defence 85 
mechanisms, and mediators of inflammatory organ damage in Covid-19. Both 86 
mechanisms may be amenable to targeted treatment with existing drugs. Large-scale 87 
randomised clinical trials will be essential before any change to clinical practice. 88 Since critical illness in Covid-19 is caused, in part, by inflammatory injury affecting the 89 lungs and lung blood vessels.1, there are at least two distinct biological components to 90 mortality risk: susceptibility to viral infection, and propensity to develop harmful 91 pulmonary inflammation. Susceptibility to life-threatening infections4 and immune-92 mediated diseases are both strongly heritable. In particular, susceptibility to respiratory 93 viruses5 such as influenza6 is heritable and known to be associated with specific genetic 94 variants.7 In Covid-19, one genetic locus, in 3p21.31, has been repeatedly associated with 95 hospitalisation.8,9 As with other viral illnesses,10 there are several examples of loss-of-96 function variants affecting essential immune processes that lead to severe disease in young 97 people: for example TLR7,11 and several genes implicated in type 1 interferon signalling 98 including the receptor subunit IFNAR2.12 Genome-wide studies have the potential to reveal 99 completely new molecular mechanisms of critical illness in Covid-19, which may provide 100 therapeutic targets to modulate the host immune response to promote survival.3 101 There is now strong evidence that critical illness caused by Covid-19 is qualitatively 102 different from mild or moderate disease, even among hospitalised patients. There are 103 multiple distinct disease phenotypes with differing patterns of presenting symptoms13 and 104 marked differential responses to immunosuppressive therapy.2 In patients without 105 respiratory failure, there is a trend towards harm from treatment with corticosteroids, 106 whereas among patients with critical respiratory failure, there is a very substantial 107 benefit.2 On this basis, we consider patients with critical Covid-19 respiratory failure to 108 have distinct pathophysiology. 109 In the UK, the group of patients admitted to critical care is relatively homogeneous, with 110 profound hypoxaemic respiratory failure being the archetypal presentation.14 The active 111 disease process in these patients is strikingly responsive to corticosteroid therapy15 and is 112 characterised by pulmonary inflammation including diffuse alveolar damage, lung 113 macrophage/monocyte influx, mononuclear cell pulmonary artery vasculitis and 114 microthrombus formation.1,16 115 Host-directed therapies have long been an aspiration for the treatment of severe disease 116 caused by respiratory viruses.17 Identification of genetic loci associated with susceptibility 117 to Covid-19 may lead to specific targets for repurposing or drug development.3 118 The GenOMICC (Genetics Of Mortality In Critical Care, genomicc.org) study has been 119 recruiting patients with critical illness syndromes, including influenza, sepsis, and 120 emerging infections, for 5 years. In order to better understand the host mechanisms 121 leading to life-threatening Covid-19, we performed a genome-wide association study 122 comparing critically ill patients with Covid-19 with controls from population genetic 123 studies in the UK. 124 



Results 125 Critically ill cases were recruited through the GenOMICC study in 208 UK Intensive Care 126 Units and hospitalised cases through the International Severe Acute Respiratory Infection 127 Consortium (ISARIC) Coronavirus Clinical Characterisation Consortium (4C) study. Cases 128 were representative of the UK critically ill population.14 Demographic and summary clinical 129 characteristics of ICU recruited participants analysed in the GWAS are described in 130 Extended Data 1. 131 DNA was extracted from whole blood and array-based genome-wide genotypes of good 132 quality obtained for 2734 unique individuals (Materials & Methods). Genetic ancestry was 133 inferred using principal component analyses and individuals from the 1000 Genomes 134 project as population references (Materials & Methods). After quality control and matching 135 to ancestry groups, 2244 individuals were included for GWAS analysis. Clinical and 136 demographic features of these cases are shown in Extended Data 1. Additional clinical 137 details for a subset of 1069 cases for whom additional data was available is presented in 138 Supplementary Figures 7-12. Imputation in this multi-ancestry cohort was performed 139 using the TOPMed reference panel. 140 Ancestry-matched controls were selected from the large population-based cohort UK 141 Biobank (5 controls to 1 case. Controls with a known positive Covid-19 test were excluded. 142 The inevitable presence of individuals in the control group, who may exhibit the critical 143 illness phenotype if exposed to SARS-CoV-2 is expected to bias any associations towards 144 the null. GWAS was carried out separately by ancestry group using logistic regression in 145 PLINK and accounting for age, sex, postal code deprivation decile and principal 146 components of ancestry. As well as several standard filters to minimise spurious 147 associations (Materials & Methods), whole genome sequencing of a subset of 1613 cases 148 was used to filter out variants likely to have been badly-called or imputed; 83937 out of the 149 4469187 imputed variants that passed other quality control filters after GWAS were thus 150 removed. There was a high level of residual inflation in the South Asian and East Asian 151 ancestry groups, rendering results in these subgroups unreliable (Extended Data 2). The 152 largest ancestry group contained 1676 individuals of European descent (EUR); this group 153 was used for the primary analyses presented below. 154 
GWAS results 155 In the primary analysis (GenOMICC European cases vs. UK Biobank controls), following 156 linkage disequilibrium-based clumping, 15 independent association signals were genome-157 wide significant at p < 5 × 10-8 (Figure 1). Eight of these were successfully validated in 158 GWAS using two independent population genetic studies (100,000 genomes and 159 Generation Scotland) as controls (Table 1) and hence were taken forward for replication. A 160 sex-specific GWAS among this group found no sex-specific associations (Supplementary 161 Table 1). Trans-ethnic meta-analysis did not reveal additional associations (Supplementary 162 Figure 3). 163 



Replication 164 Since no study of critical illness in Covid-19 of sufficient size is available, replication was 165 sought in a meta-analysis of data from 2415 hospitalised Covid-19 cases and 477741 166 population controls from the Covid-19 Host Genetics Initiative (HGI, mixed ancestry, with 167 UK Biobank cases and controls excluded) and 1128 cases and 679531 controls in the 168 23andMe Inc “broad respiratory phenotype” (EUR ancestry), which includes cases reported 169 being placed on a ventilator, being administered oxygen, or having pneumonia versus 170 controls who did not report positive tests. In addition to the locus on chr3 already reported 171 (rs73064425, OR=2.14, discovery p=4.77 × 10-30), we found robust replication for the 172 novel associations in four loci from GenOMICC: a locus on chr12 in the OAS gene cluster 173 (rs74956615, OR=1.59, discovery p = 1.65 × 10-8), near TYK2 on chr19 (rs74956615, 174 OR=1.4, discovery p = 2.3 × 10-8), in DPP9 on chr19 (rs2109069, OR=1.36, discovery p = 175 3.98 × 10-12), and a locus on chromosome 21, containing the gene IFNAR2 (rs2236757, 176 OR=1.28, discovery p = 4.99 × 10-8) (Figure 1, Extended Data 6). 177 Three variants, all in a region of chromosome 6 in which population stratification is 178 difficult to control (the major histocompatibility complex), did not replicate (Extended Data 179 6). Further studies will be required to determine whether these associations are real. 180 To increase power for exploratory analyses, inverse-variance meta-analysis was performed 181 between GenOMICC critically ill EUR (݊௖௔௦௘௦ = 1676, ݊௖௢௡௧௥௢௟௦ = 8380), HGI hospitalised 182 Covid-19 vs population (B2, version 2) without UKBioBank (݊௖௔௦௘௦ = 2415, ݊௖௢௡௧௥௢௟௦ = 183 477741) and the 23andMe broad respiratory phenotype (݊௖௔௦௘௦ = 1128, ݊௖௢௡௧௥௢௟௦ = 184 679531). This revealed one additional (unreplicated) locus in CCHCR1 at genome-wide 185 significance (using a more stringent threshold of p<10-8 in view of the absence of 186 replication opportunities for the meta-analysis)(Table 2). 187 
Mendelian randomisation 188 Mendelian randomisation provides evidence for a causal relationship between an exposure 189 variable and an outcome, given a set of well-characterised assumptions.18 We employed 190 two-sample summary-data Mendelian randomisation to assess the evidence in support of 191 causal effects of RNA expression (GTEx v7, whole blood) of various genes on the odds of 192 critical Covid-19. 193 We specified an a priori list of target genes that relate to the mechanism of action of many 194 host-targeted drugs that have been proposed for the treatment of Covid-19 195 (Supplementary Table 3). Seven of these targets had a suitable locally-acting expression 196 quantitative trait locus (eQTL) in GTEx(v7). Of these, IFNAR2 remained significant after 197 Bonferroni correcting for multiple testing for 7 tests (1.49- ߚ, standard error 0.52, p = 198 0.0043). There was equivocal evidence of heterogeneity (HEIDI19 p = 0.015), indicating that 199 the effect of this variant on critical illness in Covid-19 may be mediated through another 200 mechanism, which may lead to an under- or over-estimation of the effect of IFNAR2 201 expression on risk of critical illness. 202 



We then performed transcriptome-wide Mendelian randomisation to quantify support for 203 
unselected genes as potential therapeutic targets. Instruments were available for 4,614 204 unique Ensembl gene IDs. No genes were statistically significant after correcting for 205 multiple comparisons in this analysis (4,614 tests). After conservative filtering for 206 heterogeneity (HEIDI p > 0.05), the smallest Mendelian randomisation p = 0.00049 for a 207 variant at chr19:10466123 affecting expression of TYK2. 9 other genes with nominally 208 significant Mendelian randomisation p-values (p<0.0051) were also taken forward for 209 further analysis. 210 To replicate these findings, we tested for external evidence using a separate eQTL dataset 211 (eQTLgen)20 and GWAS (HGI B2, excluding UK Biobank). Mendelian randomisation signals 212 with consitent directions of effect were significant for IFNAR2 (p = 7.5 × 10ିସ) and TYK2 (p 213 = 5.5 × 10ିହ). 214 
Transcriptome-wide association study 215 We performed transcriptome-wide association study(TWAS)21,22 to link GWAS results to 216 tissue-specific gene expression data by inferring gene expression from known genetic 217 variants that are associated with transcript abundance (eQTL). For this analysis we used 218 GTEx v8 data for two disease-relevant tissues chosen a priori: whole blood and lung(Figure 219 2). We selected genes with p<0.05 in these tissues and performed a combined meta-TWAS 220 analysis,23 incorporating eQTL data from other tissues in GTEX, to optimise power to detect 221 differences in predicted expression in lung or blood. 222 We discovered 5 genes with genome-wide significant differences in predicted expression 223 compared to controls (Supplementary Table 7). This included 4 genes with differential 224 predicted expression in lung tissue (Figure 2; 3 on chr3: CCR2, CCR3 and CXCR6, and one on 225 chr5: MTA2B). 226 We used meta-analysis by information content (MAIC)24 to put these results in the context 227 of existing biological knowledge about host-virus interactions in Covid. We combined the 228 top 2000 genes in metaTWAS with previous systematically-compiled experimental 229 evidence implicating human genes in SARS-CoV-2 replication and host response. MAIC 230 derives a data-driven weighting for each of a range of experimental data sources in the 231 form of gene lists, and outperforms other approaches to providing a composite of multiple 232 lists.24 We found that the GenOMICC TWAS results had greater overlap with results from 233 transcriptomic, proteomic and CRISPR studies of host genes implicated in Covid-19 than 234 any other data source(Extended Data 3). 235 
Genetic correlations 236 We used the high-definition likelihood (HDL) method25 to provide an initial estimate the 237 SNP-based heritability (the proportion of phenotypic variance that is captured by additive 238 effects at common SNPs) for severe Covid-19 to be 0.065 (SE = 0.019). We were not able to 239 detect a significant signal for heritability in two additional analyses: firstly, using controls 240 from the 100,000 genomes project (in which matching to the GenOMICC cases is less close, 241 which may limit heritability estimation) and secondly, in a smaller GWAS comparing some 242 



GenOMICC cases with UK Biobank controls, using matching of BMI and age where possible. 243 This second analysis was less powerful because of the lack of close matches for many cases 244 (ncases = 1260; ncontrols = 6300; Supplementary Figure 14). Including rare variants in future 245 analyses, with larger numbers of cases, will provide a more comprehensive estimate of 246 heritability. We also tested for genetic correlations with other traits, that is, the degree to 247 which the underlying genetic components are shared with severe Covid-19. Using the HDL 248 method, we identified significant negative genetic correlations with educational attainment 249 and intelligence. Significant positive genetic correlations were detected for a number of 250 adiposity phenotypes including body mass index and leg fat (Supplementary Figure 19). 251 Consistent with GWAS results from other infectious and inflammatory diseases, there was a 252 significant enrichment of strongly associated variants in promoters and enhancers,26 253 particularly those identified by the EXaC study as under strong evolutionary selection 254 (Supplementary Figure 18).27 The strongest tissue type enrichment was in spleen (which 255 may reflect enrichment in immune cells), followed by pancreas (Supplementary Figure 20). 256 
Discussion 257 We have discovered and replicated significant genetic associations with life-threatening 258 Covid-19 (Figure 1). Our focus on critical illness increases the probability that some of 259 these associations relate to the later, immune-mediated phase of disease associated with 260 respiratory failure requiring invasive mechanical ventilation.2 Importantly, the GWAS 261 approach is unbiased and genome-wide, enabling the discovery of completely new 262 pathophysiological mechanisms. Because genetic variation can be used to draw a causal 263 inference, genetic evidence in support of a therapeutic target substantially improves the 264 probability of successful drug development.28 In particular, Mendelian randomisation 265 occupies a unique position in the hierarchy of clinical evidence.29 266 Patients admitted to intensive care units in the UK during the first wave of Covid-19 were, 267 on average, younger and less burdened by comorbid illness than the hospitalised 268 population.14 The population studied here are defined by their propensity to critical 269 respiratory failure due to Covid-19. GenOMICC recruited in 208 intensive care units 270 (covering > 95% of UK ICU capacity), ensuring that a broad spread across the genetic 271 ancestry of UK patients was included (Extended Data 4). 272 For external replication, the nearest comparison is the hospitalised vs population analysis 273 in the Covid-19 Host Genetics initiative, and the 23andMe broad respiratory phenotype, 274 which have been generously shared with the international community. Likewise, full 275 summary statistics from GenOMICC have been made immediately openly available at 276 genomicc.org/data. 277 Despite the differences in case definitions, novel associations from our study of critical 278 illness replicate robustly in combined data from hospitalised case studies (Extended Data 279 6). Separately, the Mendelian randomisation results implying a causal role for IFNAR2 and 280 
TYK2 are also statistically significant in confirmatory analyses. Our findings reveal that 281 critical illness in Covid-19 is related to at least two biological mechanisms: innate antiviral 282 



defences, which are known to be important early in disease (IFNAR2 and OAS genes), and 283 host-driven inflammatory lung injury, which is a key mechanism of late, life-threatening 284 Covid-19 (DPP9, TYK2 and CCR2).2 285 Interferons are canonical host antiviral signalling mediators, and stimulate release of many 286 essential components of the early host response to viral infection.30 Consistent with a 287 beneficial role for type I interferons, increased expression of the interferon receptor 288 subunit IFNAR2 reduced the odds of severe Covid-19 with Mendelian randomisation 289 discovery p = 0.0043 (7 tests); replication p = 7.5 × 10ିସ (1 test). Within the assumptions 290 of Mendelian randomisation, this represents evidence for a protective role for IFNAR2 in 291 Covid-19. Rare loss-of-function mutations in IFNAR2 are associated with severe Covid-1912 292 and many other viral diseases.31,32 This suggests that adminstration of interferon may 293 reduce the probability of critical illness in Covid-19, but our evidence cannot distinguish 294 
when in illness such a treatment may be effective. Exogenous interferon treatment did not 295 reduce mortality in hospitalised patients in a large scale clinical trial,33 suggesting that this 296 genetic effect may be mediated during the early phase of disease when viral load is high. 297 The variant rs10735079 (chr12, p = 1.65 × 10-8) lies in the interferon-inducible 298 oligoadenylate synthetase (OAS) gene cluster (OAS1, OAS2 and OAS3; Figure 1). Our TWAS 299 detected significant associations with predicted expression of OAS3 (Figure 2). OAS1 300 variants were implicated in susceptibility to SARS-CoV in candidate gene association 301 studies in Vietnam34 and China.35 These genes encode enzymes which produce a mediator 302 (2’,5’-oligoadenylate, 2-5A) which activates an effector enzyme, RNAse L. RNAse L degrades 303 double-stranded RNA,36 a replication intermediate of coronaviruses.37 The 304 betacoronaviruses OC43 and MHV make viral phosphodiesterases that cleave the host 305 antiviral mediator 2-5A,38 but SARS-CoV-2 is not known to have this ability. The OAS genes 306 therefore also provide a potential therapeutic target: endogenous phosphodiesterase 12 307 (PDE-12) activity degrades the host antiviral mediator 2-5A. Therapeutic PDE-12 inhibitors 308 are available, and augment OAS-mediated antiviral activity.39 309 The association in 19p13.3 (rs2109069, p = 3.98 × 1012) is an intronic variant in the gene 310 encoding dipeptidyl peptidase 9 (DPP9). Variants in this locus are associated with 311 idiopathic pulmonary fibrosis.40 DPP9 encodes a serine protease with diverse intracellular 312 functions, including cleavage of the key antiviral signalling mediator CXCL10,41 and key 313 roles in antigen presentation,42 and inflammosome activation.43 314 Since opportunities for therapeutic intervention, particularly experimental therapy, are 315 more abundant in later, more severe disease, it is important that our results also reveal 316 genes that may act to drive inflammatory organ injury. TYK2 is one of 4 gene targets for JAK 317 inhibitors such as baricitinib,44 one of the nine candidate drugs we used in the creation of 318 our a priori target list (Supplementary Table 3). The association between TYK2 expression 319 and critical illness was also confirmed in an external dataset. 320 We replicate the finding of Ellinghaus et al. at 3p21.31.9 The extremely small p-value at this 321 locus (p=4.77 × 10-30) may reflect the large size of our study, and our focus on extreme 322 severity, since we see a larger effect size in GenOMICC than in the replication studies 323 (Extended Data 5). A number of genes in this locus could plausibly explain an association. 324 



Our systematic review and meta-analysis of experimental data on betacoronavirus 325 infection from other sources provides moderate biological support for FYCO1, although this 326 additional information comes mostly from in vitro model systems.45 Our TWAS results 327 show that variants in this region confer genome-wide significant differences in predicted 328 expression of CXCR6, CCR2 and CCR3 (Figure 2 a); it is likely that one, but not all of these 329 genes is an important mediator of critical illness. 330 Association with critical illness for genotype-inferred CCR2 (CC-chemokine receptor 2) 331 expression is particularly strong in lung tissue(Figure 2 b). CCR2 promotes 332 monocyte/macrophage chemotaxis towards sites of inflammation, and there is increased 333 expression of the canonical ligand for CCR2 (monocyte chemoattractant protein/MCP-1), in 334 bronchoalveolar lavage fluid from the lungs of Covid-19 patients during mechanical 335 ventilation.46 Circulating MCP-1 concentrations are associated with more severe disease.47 336 Anti-CCR2 monoclonal antibody therapy in treatment of rheumatoid arthritis is safe.48 337 The ABO locus was also previously associated with Covid-19,9 but was not genome-wide 338 significant in the GenOMICC critically ill cohort. Interestingly there is a signal close to 339 genome-wide significance at this locus in the combined meta-analysis (Figure 1), 340 suggesting that this variant may be associated with susceptibility to Covid-19, but not 341 critical illness (Extended Data 5). 342 Analysis of shared heritability highlights a positive correlation with adiposity. This does 343 not imply a causal relationship, as a number of biases may be at play, but may reflect a 344 combination of two effects: firstly, increased BMI and lower socio-economic status are 345 strong risk factors for severe Covid-19,14 and secondly, UK Biobank participants are 346 disproportionately drawn from social groups in which obesity is under-represented 347 compared to the general population.49 348 Because of the urgency of completing and reporting this work, we have drawn controls 349 from population genetic studies with systematic differences in population structure, 350 demographics and comorbid illness, who were genotyped using different technology from 351 the cases. Residual confounding is reflected in the genomic inflation (ߣ଴.ହ) value of 1.099 352 for the primary analysis (Extended Data 2). We mitigated the consequent risk of false-353 positive associations driven by genotyping errors by genotyping the majority of our 354 subjects using two different methods (microarray and whole-genome sequencing), and by 355 verifying significant associations using two additional control groups (100,000 genomes 356 and Generation Scotland). The success of these mitigations is demonstrated by robust 357 replication of our sentinel SNPs in external studies. Our meta-analysis, combining 358 GenOMICC with multiple additional sources of genome-wide associations, has a reassuring 359 ߣ଴.ହ = 1.017 (Extended Data 2). 360 There is an urgent need to deepen these findings through further studies. Our MAIC results 361 show that highly ranked genes in GenOMICC are more likely to be implicated in Covid in 362 other studies (Extended Data 3). We continue to recruit to the GenOMICC study, in the 363 expectation that additional associations exist and can be detected with larger numbers of 364 cases. Future studies using whole genome sequencing will search the rarer end of the allele 365 frequency spectrum for variants increasing susceptibility. Effect sizes are likely to be 366 



greater in GenOMICC because the cohort is strongly enriched for immediately life-367 threatening disease in patients who are either receiving invasive mechanical ventilation, or 368 considered by the treating physicians to be at high risk of requiring mechanical support. 369 We have discovered new and highly plausible genetic associations with critical illness in 370 Covid-19. Some of these associations lead directly to potential therapeutic approaches to 371 augment interferon signalling, antagonise monocyte activation and infiltration into the 372 lungs, or specifically target harmful inflammatory pathways. While this adds substantially 373 to the biological rationale underpinning specific therapeutic approaches, each treatment 374 must be tested in large-scale clinical trials before entering clinical practice. 375   376 



Tables 377  378 Table 1 379 SNP chr:pos(b37) Risk Alt RAFgcc RAFukb OR CI Pgcc.ukb Pgcc.gs Pgcc.100k Locus rs73064425 3:45901089 T C 0.15 0.07 2.1 1.88-2.45 4.8 x 10-30 2.9 x 10-27 3.6 x 10-32 LZTFL1 rs9380142 6:29798794 A G 0.74 0.69 1.3 1.18-1.43 3.2 x 10-8 0.00091 1.8 x 10-8 HLA-G rs143334143 6:31121426 A G 0.12 0.07 1.9 1.61-2.13 8.8 x 10-18 2.6 x 10-24 5.8 x 10-18 CCHCR1 rs3131294 6:32180146 G A 0.9 0.86 1.5 1.28-1.66 2.8 x 10-8 1.3 x 10-10 2.3 x 10-8 NOTCH4 rs10735079 12:113380008 A G 0.68 0.63 1.3 1.18-1.42 1.6 x 10-8 2.8 x 10-9 4.7 x 10-6 OAS1/3 rs2109069 19:4719443 A G 0.38 0.32 1.4 1.25-1.48 4 x 10-12 4.5 x 10-7 2.4 x 10-8 DPP9 rs74956615 19:10427721 A T 0.079 0.05 1.6 1.35-1.87 2.3 x 10-8 2.2 x 10-13 3.9 x 10-6 TYK2 rs2236757 21:34624917 A G 0.34 0.28 1.3 1.17-1.41 5 x 10-8 8.9 x 10-5 8.3 x 10-7 IFNAR2 
 380 Table 2 381 SNP chr:pos(b37) Risk Alt ORgcc CIgcc Pgcc ORmeta CImeta Pmeta Locus rs71325088 3:45862952 C T 2.1 1.87-2.43 9.3 x 10-30 1.9 1.73-2 2.5 x 10-54 LZTFL1 rs143334143 6:31121426 A G 1.8 1.61-2.13 8.8 x 10-18 1.3 1.27-1.48 1.5 x 10-10 CCHCR1 rs6489867 12:113363550 T C 1.3 1.15-1.37 6.9 x 10-7 1.2 1.14-1.25 9.7 x 10-10 OAS1 rs2109069 19:4719443 A G 1.4 1.25-1.48 4 x 10-12 1.2 1.19-1.31 7 x 10-13 DPP9 rs11085727 19:10466123 T C 1.3 1.17-1.4 1.3 x 10-7 1.2 1.18-1.31 1.2 x 10-13 TYK2 rs13050728 21:34615210 T C 1.3 1.15-1.38 3 x 10-7 1.2 1.16-1.28 5.1 x 10-12 IFNAR2 
 382   383 



Table Legends 384 
Table 1 385 Lead variants from independent genome-wide significant regions. chr:pos - chromosome 386 and position of the top SNP (build 37); Risk – risk allele; Alt - other allele; RAF - risk allele 387 frequency; OR - effect size (odds ratio) of the risk allele in the GenOMICC EUR analysis; CI - 388 95% confidence interval for the odds ratio in the GenOMICC EUR cohort; P - p-value, Locus 389 – gene nearest to the top SNP. Subscript identifiers indicate the cohorts used for cases: gcc - 390 GenOMICC EUR; and controls: ukb - UK Biobank; gs - Generation Scotland; 100k - 100,000 391 genomes. 392 
Table 2 393 Meta-analysis of overlapping SNPs between GenOMICC (EUR) and HGI (hospitalized Covid-394 19 vs. population) and 23andMe studies. Since this is a meta-analysis of all available data, 395 external replication cannot be attempted, so SNPs are included in this table if they meet a 396 more stringent p-value threshold of p<10-8. SNP – the strongest SNP in the locus, ; Risk – 397 risk allele; Alt - alternative allele; OR - odds ratio of the risk allele; CI - 95% confidence 398 interval for odds ratio; Locus – gene nearest to the top SNP. Subscript identifiers show gcc - 399 GenoMICC study, European ancestry, comparison with UK Biobank; meta - combined meta-400 analysis of all three studies (GenOMICC, HGI and 23andMe) for cases of European ancestry. 401 
Figure Legends 402 
Figure 1 403 Miami plot showing p-values for GenOMICC GWAS in EUR (after validation, top panel) and 404 meta-analysis including patients from the Covid-19 Host Genetics Initiative and 23andMe 405 (bottom panel). Uncorrected p-values from GWAS analysis are shown. In upper 406 (GenOMICC) panel, red horizontal line shows genome-wide significance for common 407 variants at −݈݋ ଵ݃଴(5 × 10ି଼); in lower (meta-analysis) panel, red horizontal line shows a 408 more stringent genome-wide significance threshold for meta-analysis variants at 409 −݈݋ ଵ݃଴(10ି଼). Quantile-quantile (QQ) plots are inset showing genomic inflation (ߣ) for 410 each analysis: GenOMICC EUR ߣ = 1.099; GenOMICC-HGI-23m meta-analysis ߣ = 1.017 411 
Figure 2 412 Summary of TWAS results. a. Gene-level Manhattan plot showing raw p-value results from 413 meta-TWAS analysis across tissues (see Methods). Red horizontal line shows gene-level 414 genome-wide significance at −݈݋ ଵ݃଴(5 × 10ି଺) b. z-scores showing direction of effect for 415 genotype-inferred expression of transcripts encoding protein-coding genes in lung tissue 416 (GTEX v8). Red highlighting indicates genome-wide significance at p < 5 × 10-6. 417 
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Materials and methods 1177 
Recruitment of cases 1178 2,636 patients recruited to the GenOMICC study (genomicc.org) had confirmed Covid-19 1179 according to local clinical testing and were deemed, in the view of the treating clinician, to 1180 require continuous cardiorespiratory monitoring. In UK practice this kind of monitoring is 1181 undertaken in high-dependency or intensive care units. An additional 135 patients were 1182 recruited through ISARIC 4C (isaric4c.net) - these individuals had confirmed Covid-19 1183 according to local clinical testing and were deemed to require hospital admission. Both 1184 studies were approved by the appropriate research ethics committees (Scotland 1185 15/SS/0110, England, Wales and Northern Ireland: 19/WM/0247). Current and previous 1186 versions of the study protocol are available at genomicc.org/protocol. All participants gave 1187 informed consent. 1188 
Genotyping 1189 DNA was extracted from whole blood using Nucleon Kit (Cytiva) with the BACC3 protocol. 1190 DNA samples were re-suspended in 1 ml TE buffer pH 7.5 (10mM Tris-Cl pH 7.5, 1mM 1191 EDTA pH 8.0). The yield of the DNA was measured using Qubit and normalised to 50ng/ߤl 1192 before genotyping. 1193 Genotyping was performed using the Illumina Global Screening Array v3.0 + multi-disease 1194 beadchips (GSAMD-24v3-0-EA) and Infinium chemistry. In summary this consists of three 1195 steps: (1) whole genome amplification, (2) fragmentation followed by hybridisation, and 1196 (3) single-base extension and staining. For each of the samples, 4 ߤl of DNA normalised to 1197 50ng/ߤl was used. Each sample was interrogated on the arrays against 730,059 SNPs. The 1198 arrays were imaged on an Illumina iScan platform and genotypes were called automatically 1199 using GenomeStudio Analysis software v2.0.3, GSAMD-24v3-0-EA_20034606_A1.bpm 1200 manifest and cluster file provided by manufacturer. 1201 In 1667 cases, genotypes and imputed variants were confirmed with Illumina NovaSeq 1202 6000 whole genome sequencing. Samples were aligned to the human reference genome 1203 hg38 and variant called to GVCF stage on the DRAGEN pipeline (software 1204 v01.011.269.3.2.22, hardware v01.011.269) at Genomics England. Variants were 1205 genotyped with the GATK GenotypeGVCFs tool v4.1.8.1,1 filtered to minimum depth 8X 1206 (95% sensitivity for heterozygous variant detection,2) merged and annotated with allele 1207 frequency with bcftools v1.10.2. 1208 
Quality control 1209 Genotype calls were carefully examined within GenomeStudio using manufacturer and 1210 published3 recommendations, after excluding samples with low initial call rate (<90%) and 1211 reclustering the data thereafter. Briefly, X and Y marker calls were all visually inspected 1212 and curated if necessary, as were those for autosomal markers with minor allele frequency 1213 > 1% displaying low Gentrain score, cluster separation, and excess or deficit of 1214 heterozygous calls. Genotype-based sex determination was performed in GenomeStudio 1215 



and samples excluded if not matching records expectation. Five individuals with XXY 1216 genotypes were also detected and excluded for downstream GWAS analyses. Genotypes 1217 were exported, in genome reference consortium human build 37 (GRCHb37) and Illumina 1218 “source” strand orientation, using the GenotypeStudio plink-input-report-plugin-v2-1-1219 
4. A series of filtering steps was then applied using PLINK 1.9 leaving 2790 individuals and 1220 479095 variants for further analyses (exclusion of samples with call rate < 95%, selection 1221 of variants with call rate > 99% and minor allele frequency (MAF) > 1% and final samples 1222 selection using a call rate > 97%). 1223 
Kinship 1224 Kinship and ancestry inference were calculated following UK Biobank4 and 1M veteran 1225 program.5 First King 2.16 was used to find duplicated individuals which have been 1226 recruited by two different routes. The analysis flagged 56 duplicated pairs, from which one 1227 was removed according to genotyping quality (GenomeStudio p50GC score or/and 1228 individual call rate). This leaves a set of 2734 unique individuals. 1229 Regions of high linkage disquilibrium (LD) defined in the UK Biobank4 were excluded from 1230 the analysis, as well as SNPs with MAF<1% or missingness >1%. King 2.1 was used to 1231 construct a relationship matrix up to 3rd degree using the King command --kinship --1232 
degree 3 and then the function largest_independent_vertex_set() from the igraph tool 1233 http://igraph.sf.net was used to create a first set of unrelated individuals. Principal 1234 component analysis (PCA) was conducted with gcta 1.97 in the set of unrelated individuals 1235 with pruned SNPs using a window of 1000 markers, a step size of 80 markers and an r2 1236 threshold of 0.1. SNPs with large weights in PC1, PC2 or PC3 were removed, keeping at 1237 least 2/3 of the number of pruned SNPs to keep as an input of the next round of King 2.1. 1238 The second round of King 2.1 was run using the SNPs with low weights in PC1, PC2 and PC3 1239 to avoid overestimating kinship in non-European individuals. After this round 2718 1240 individuals were considered unrelated up to 3rd degree. 1241 
Genetic ancestry 1242 Unrelated individuals from the 1000 Genome Project dataset were calculated using the 1243 same procedure described above, and both datasets were merged using the common SNPs. 1244 The merged genotyped data was pruned with plink using a window of 1000 markers a 1245 step size of 50 and a r2 of 0.05, leaving 92K markers that were used to calculate the 20 first 1246 principal components with gcta 1.9. Ancestry for GenOMICC individuals was inferred using 1247 ADMIXTURE8 populations defined in 1000 genomes. When one individual had a probability 1248 > 80% of pertaining to one ancestry, then the individual was assigned to this ancestry, 1249 otherwise the individual was assigned to admix ancestry as in the 1M veteran cohort.5 1250 According to this criterion there are 1818 individuals from European ancestry (EUR), 190 1251 from African ancestry (AFR), 158 from East Asian ancestry (EAS), 254 from South Asian 1252 ancestry (SAS), and 301 individuals with admixed ancestry (2 or more). 1253 



Imputation 1254 Genotype files were converted to plus strand and SNPs with Hardy-Weinberg Equilibrium 1255 (HWE) p-value<10-6 were removed. Imputation was calculated using the TOPMed 1256 reference panel.9 and results were given in GRCh38 human reference genome and plus 1257 strand. The imputed dataset was filtered for monogenic and low imputation quality score 1258 (r2<0.4) using BCFtools 1.9. To perform GWAS, files in VCF format were further filtered for 1259 r2>0.9 and converted to BGEN format using QCtools 1.3.10 1260 UK Biobank imputed variants with imputation score >0.9 and overlapping our set of 1261 variants (n=5,981,137) were extracted and merged with GenOMICC data into a single BGEN 1262 file containing cases and controls using QCtools 1.3. 1263 
GWAS 1264 Related individuals to degree 3 were removed. 13 individuals with American ancestry were 1265 removed as the sample size provided insufficient power to perform a reliable GWAS for this 1266 group. The final dataset includes 2244 individuals. Using PCA to infer genetic ancestry, 1267 there were 1676 individuals from European ancestry, 149 individuals from East Asian 1268 ancestry, 237 individuals from South Asian ancestry and 182 individuals from African 1269 ancestry (Extended Data 1). If age or deprivation status were missing for some individuals, 1270 the value was set to the mean of their ancestry. GWAS were performed separately for each 1271 ancestry group. 1272 Tests for association between case-control status and allele dosage at individuals SNPs 1273 were performed by fitting logistic regression models using PLINK.11 Independent analyses 1274 were performed for each ethnic group. All models included sex, age, mean-centered age2, 1275 deprivation score decile of residential postcode, and the first 10 genomic principal 1276 components as covariates. 1277 Genomic principal components were computed on the combined sample of all UK Biobank 1278 and GenOMICC participants. Specifically, 456,750 genetic variants were identified which 1279 were shared between the variants contained in the called genotypes in the GenOMICC 1280 dataset and imputed UK Biobank genotypes, which had an imputation info score above 0.95 1281 and a minor allele frequency above 1%. After merging genotypes at these variants, variants 1282 were removed which had a minor allele frequency below 2.5%, a missingness rate above 1283 1.5%, showed departure from Hardy-Weinberg equilibrium with a p value below 10-50, or 1284 which were within previously identified regions of high linkage disequilibrium within UK 1285 Biobank. After LD-pruning of the remaining variants to a maximum r2 of 0.01 based on a 1286 1000 variant window moving in 50 variants steps, using the PLINK indep-pairwise 1287 command and yielding 13,782 SNPs, the leading 20 genomic principal components were 1288 computed using FlashPCA2.12 1289 GWAS results for European ancestry were filtered for MAF>0.01, HWE p-value > 10-50 and 1290 genotyping rate >0.99. An extra filter was added to avoid bias for using a different 1291 genotyping method and imputation panel between controls and cases. This could not be 1292 controlled for using regression because all cases and all controls were genotyped using 1293 



different methods. MAF for each ancestry were compared between UK Biobank European 1294 controls and gnomAD hg38 non-Finnish Europeans downloaded in August 2020.13 SNPs 1295 were were removed from the GWAS results following these two rules: (a) In SNPs with 1296 MAF > 10% in gnomAD, an absolute difference of 5% between gnomAD and UK biobank 1297 controls MAF (b) In SNPs with MAF <10% in gnomAD, a difference > 25% gnomAD MAF, 1298 between UK Biobank controls and gnomAD. GWAS from non-European ancestries were 1299 filtered for a MAF in UK Biobank controls corresponding to the same ancestry > 5% and 1300 then for the SNPs that passed QC in the European GWAS. To calculate differences between 1301 UK Biobank European individuals and gnomAD allele frequencies, non Finnish-Europeans 1302 gnomAD allele frequencues were used, as European UK Biobank controls are mainly non-1303 Finnish. 1304 Filtered GWAS for each ancestry, containing a total of ~4.7M SNPs, were combined in a 1305 trans-ethnic meta-analysis using METAL14 standard error mode and controling for 1306 population stratification (genomic control on). Nearest genes were defined using FUMA 1307 v1.3.6 SNP2GENE function,15 using LD R2 > 0.6 and UK Biobank release 2 reference panel. 1308 A sex-specific GWAS within European individuals was performed using 1180 unrelated 1309 male cases and 496 unrelated female cases and 5 UK Biobank random controls matched by 1310 sex and ancestry for each case. Test for association between case-control status and allele 1311 dosage at individual SNPs were performed by fitting a logistic regression model with 1312 PLINK. Age, mean age squared, deprivation decile of residential postcode and the first 10 1313 principal components were added as covariates in the models. 1314 
Deprivation score 1315 The UK Data Service provides measures of deprivation based on Census Data and 1316 generated per postcode. The latest version of the Deprivation Scores were published in 1317 2017 and are based on the 2011 census. Since only partial postcodes were available for 1318 most samples we were unable to use these indices directly. However, we generated an 1319 approximation to the scores by calculating an average weighted by population count across 1320 the top-level postcode areas. 1321 The initial input file was part of the aggregated census data identified by 1322 DOI:10.5257/census/aggregate-2011-2. 1323 Specifically the postcode data were downloaded from: 1324 http://s3-eu-west-1325 1.amazonaws.com/statistics.digitalresources.jisc.ac.uk/dkan/files/Postcode_Counts_and_D1326 eprivation_Ranks/postcodes.zip 1327 Population count and deprivation score for each published postcode were extracted and 1328 weighted average score calculated for each top-level postcode. We further categorised each 1329 top-level postcode score into decile and quintile bins for more coarse-grained analyses. 1330 



Whole Genome Sequencing 1331 Whole Genome Sequencing (WGS) gVCF files were obtained for the 1667 individuals for 1332 which we had whole genome sequence data. Variants overlapping the positions of the 1333 imputed variants were called using GATk and variants with depth<8X (the minimum depth 1334 for which 95% coverage can be expected) were filtered. Individual VCF files were joined in 1335 a multi-sample VCF file for comparison with imputed variants. 1613 of these 1667 were 1336 used in the final GWAS. Samples were filtered and variants annotated using bcftools 1.9. 1337 VCF files obtained from imputation were processed in an identical manner. Alternative 1338 allele frequency was calculated with PLINK 2.016 for both WGS and imputed data. 1339 
Controls 1340 
UK Biobank 1341 UK Biobank participants were considered as potential controls if they were not identified 1342 by the UK Biobank as outliers based on either genotyping missingness rate or 1343 heterogeneity, and their sex inferred from the genotypes matched their self-reported sex. 1344 For these individuals, information on sex (UKBID 31), age, ancestry, and residential 1345 postcode deprivation score decile was computed. Specifically, age was computed as age on 1346 April 1st, 2020 based on the participant’s birth month (UKBID 34) and year (UKBID 52). 1347 The first part of the residential postcode of participants was computed based on the 1348 participant’s home location (UKBID 22702 and 22704) and mapped to a deprivation score 1349 decile as previously described for GenOMICC participants. Ancestry was inferred as 1350 previously described for GenOMICC participants. 1351 After excluding participants who had received PCR tests for Covid-19, based on information 1352 downloaded from the UK Biobank in August 2020, five individuals with matching inferred 1353 ancestry were sampled for each GenOMICC participant as controls. After sampling each 1354 control, individuals related up to 3rd degree were removed from the pool of potential 1355 further controls. 1356 
The 100,000 Genomes Project 1357 Following ethical approval (14/EE/1112 and 13/EE/032), consenting participants from 1358 the 100,000 Genomes Project with a broad range of rare diseases, cancers and infection 1359 were enrolled by 13 regional NHS Genomic Medicine Centres across England and in 1360 Northern Ireland, Scotland and Wales and whole blood was drawn for DNA extraction. 1361 After quality assurance whole genome sequencing at 125 or 150 base pairs was performed 1362 by Illumina Laboratory Services on either Hiseq 2500 or Hiseq X sequencers in the 1363 Genomics England Sequencing Centre, followed by detection of small variants (single 1364 nucleotide variants and small indels) using Starling. 1365 Test for association between cases-control status were performed by running mixed model 1366 association tests using SAIGE (v0.39). 1675 individuals from the GenOMICC study and 1367 45,875 unrelated participants and of European ancestry were included. Genomic principal 1368 components were calculated for the combined dataset of GenOMICC participants and whole 1369 



genome sequence data from the 100,000 Genomes Project. Principal Components Analysis 1370 (PCA) was performed with GCTA software using approximately 30,000 SNPs selected with 1371 minor allele frequency >0.005 and after LD pruning (r2 < 0.1 with a window size of 500kb). 1372 Fitting of the null logistic mixed model was performed using the SNPs used for PCA and 1373 included age, sex, squared age, age × sex and first 20 genomic principal components as 1374 covariates. 1375 Test for association using SAIGE was performed after filtering of variants in the WGS 1376 dataset for genotype quality and minor allele frequency ≥ 0.05. GWAS-specific quality 1377 filtering was performed to include variants with minor allele count ≥ 20 for each 1378 phenotype, differential missingness between cases and controls (p-value <1 × 10-5) and 1379 departure from Hardy-Weinberg equilibrium (p-value <1 × 10-5). 1380 
Generation Scotland 1381 Generation Scotland: Scottish Family Health Study (hereafter referred to as Generation 1382 Scotland) is a population-based cohort of 24 084 participants sampled from five regional 1383 centers across Scotland(www.generationscotland.org).17 A large subset of participants 1384 were genotyped using either Illumina HumanOmniExpressExome-8v1_A or v1-2, and 20 1385 032 passed QC criteria previously described.18,19 Genotype imputation using the TOPMed 1386 reference panel was recently performed (freeze 5b) using Minimac4 v1.0 on the University 1387 of Michigan server https://imputationserver.sph.umich.edu.20 Imputation data from 7689 1388 unrelated (genomic sharing identical by descent estimated using PLINK1.9 < 5%) 1389 participants were used as control genotypes in a GWAS using GenOMICC cases of European 1390 ancestry, for quality check purpose of associated variants. GWAS was performed in a 1391 logistic regression framework implemented in the PLINK2 (https://www.cog-1392 genomics.org/plink/2.0/) glm function, adjusting for age, sex and the first 10 principal 1393 components of European ancestry. These coordinates were obtained from projection to the 1394 principal components space of 1000 Genomes European population samples using KING 1395 v2.2.56 and a LD-pruned subset of target genotyped markers passing quality check and 1396 intersecting with the reference populations. 1397 
Validation 1398 Clumped hits in discovery GWAS were validated using controls from Generation Scotland 1399 and 100K. To consider a hit validated, the direction of effect should be the same in all three 1400 GWAS and the p-value in both Generation Scotland and 100K had to be p<0.05/nvalidations, 1401 where nvalidations is the number of significant independent loci in our analysis at the 1402 discovery threshold of p < 5 × 10-8. 1403 
Replication 1404 GenOMICC EUR loci were defined usign the clump function of PLINK 1.916 and clumping 1405 parameters r2 = 0.1, pval = 5 × 10-8 and pval2 = 0.01; distance to the nearest gene was 1406 calculated using ENSEMBL GRCh37 gene annotation. 1407 



No GWAS has been reported of critical illness or mortality in Covid-19. As a surrogate, to 1408 provide some replication for our findings, replication analyses were performed using Host 1409 Genetics Initiative build 37, version 2 (July 2020) B2 (hospitalised Covid-19 vs population) 1410 GWAS. Summary statistics were used from the full analysis, including all cohorts and GWAS 1411 without UK Biobank, to avoid sample overlap. Replication p-value was set to 6.25 × 10-4 1412 (0.05/8, where 8 is the number of loci significant in the discovery). 1413 
Genome-wide meta-analysis 1414 Meta-analysis between GenOMICC, HGI and 23andMe was performed using fixed-effect 1415 inverse variance meta-analysis in METAL,14 with correction for genomic control on. The 1416 23andMe study comprises cases and controls from EUR genetic ancestry group. The HGI B2 1417 analysis is a trans-ancestry meta-analysis, with the great majority of cases being multi-1418 ethnic European (EUR and FIN), with 238 cases of non-European ancestry (176 Admixed 1419 American, AMR, from BRACOVID study and 62 South Asian, SAS, from the GNH study). 1420 
Post-GWAS analyses 1421 
TWAS and Meta-TWAS 1422 We performed transcriptome-wide association using the MetaXcan framework21 and the 1423 GTEx v8 eQTL MASHR-M models available for download (http://predictdb.org/). To 1424 increase SNP coverage to perform TWAS, first GWAS summary statistics for European 1425 ancestry were imputed using the fizi22 impute function 1426 (https://github.com/bogdanlab/fizi), 1000 genomes European population as LD reference 1427 and 30% as minimum proportion of SNPs for a region (–min-prop 0.3). Then, imputed 1428 GWAS results were harmonised, lifted over to hg38 and linked to 1000 Genomes reference 1429 panel using GWAS tools https://github.com/hakyimlab/summary-gwas-1430 imputation/wiki/GWAS-Harmonization-And-Imputation. 1431 Imputed and harmonised GWAS summary statistics were used to perform TWAS for whole 1432 blood and lung GTEx v8 tissues with S-PrediXcan function. Resulting p-values were 1433 corrected using the Bonferroni correction to find significant gene associations. To 1434 overcome the limitations of sample size in GTEx v8 lung and whole blood tissues, we 1435 performed a meta-twas prioritising genes with small p-values in these tissues and using 1436 GTEx v8 gene expression in all tissues and S-Multixcan.23 1437 
Mendelian randomisation 1438 Two-sample summary data based Mendelian randomisation24 was performed using the 1439 results of GenOMICC and the Genotype-Tissue expression project,25 GTEx v7 (using 1440 SMR/HEIDI pre-prepared data: https://cnsgenomics.com/software/smr/#DataResource), 1441 with Generation Scotland17,26 forming a linkage disequilibrium reference. GenOMICC 1442 results from those of European ancestry were used as the outcome; and GTEx (v7) whole 1443 blood expression results as the exposure. Additional data pertaining to GTEx v7 were 1444 downloaded from GTEx: https://gtexportal.org/ (accessed 20 Feb 2020, 05 Apr 2020, and 1445 04 Jul 2020), and SMR/HEIDI from https://cnsgenomics.com/software/smr/ (accessed 03 1446 



Jul 2020). Analyses were conducted using Python 3.7.3 and SMR/HEIDI v1.03 (plots were 1447 made using SMR/HEIDI v0.711). An LD reference was created using data from the 1448 population-based Generation Scotland cohort (used with permission; described 1449 previously19): from a random set of 5,000 individuals, using Plink v1.9 (www.cog-1450 genomics.org/plink/1.9/), a set of individuals with a genomic relatedness cutoff < 0.01 was 1451 extracted; 2,778 individuals remained in the final set. All data used for the SMR/HEIDI 1452 analyses were limited to autosomal biallelic SNPs: 4,264,462 variants remained in the final 1453 merged dataset. 1454 Significant (as per GTEx v7; nominal p-value below nominal p-value threshold) local 1455 (distance to transcriptional start site < 1Mb) eQTL from GTEx v7 whole blood for protein 1456 coding genes (as per GENCODE v19) with a MAF > 0.01 (GTEx v7 and GenOMICC) were 1457 considered as potential instrumental variables. Per variant, we first selected the Ensembl 1458 gene ID to which it was most strongly associated followed by selecting the variant to which 1459 each Ensembl gene ID was most strongly associated. Instruments were available for 4,614 1460 unique Ensembl gene IDs. 1461 Results were assessed based upon a list of genes selected a priori as of interest 1462 (Supplementary Table 3), and together as a whole. Replication of Bonferroni-corrected 1463 significant results was attempted in the results of Covid-19-Host Genetics Initiative - 1464 https://www.covid19hg.org/ - with UK Biobank excluded (July 2nd 2020 data release) 1465 using the eQTLgen expression dataset.27 Hospitalized Covid-19 vs. population (ANA_B2_V2) 1466 was selected as the phenotype most similar to our own, and therefore the most appropriate 1467 for use as a replication cohort. 1468 In order to further validate the analyses above, generalized summary-data Mendelian 1469 randomization (GSMR)28 was performed using exposure data from 1470 https://www.eqtlgen.org/index.html (accessed 26/10/2020)27 and the publicly available 1471 GenOMICC EUR data for TYK2 and IFNAR2. GSMR was performed using GCTA version 1472 1.92.1 beta6 Linux. Pleiotropic SNPs were filtered using HEIDI-outlier test (threshold = 1473 0.01) and instrument SNPs were selected at a genome-wide significance level ( ௘ܲொ்௅ < 5e-1474 8) using LD clumping (LD r2 threshold = 0.05 and window size = 1Mb). The imputed 1475 genotypes for 50,000 unrelated individuals (based on SNP-derived genomic relatedness < 1476 0.05 using HapMap 3 SNPs) from the UK Biobank were used as the LD reference for 1477 clumping. GSMR accounts for remaining LD not removed by LD clumping. 1478 
Genomic region plots 1479 Genomic region plots were created using https://github.com/Geeketics/LocusZooms. 1480 
Gene-level and pathway analyses 1481 Gene-level burden of significance in the EUR ancestry group result was calculated using 1482 MAGMA v1.08.29 SNPs were annotated to genes by mapping based on genomic location. 1483 SNPs were assigned to a gene if the SNPs location is within 5 kb up- or down-stream of the 1484 gene region (defined as the transcription start site to transcription stop site). The MAGMA 1485 SNP-wise mean method was applied which utilises the sum of squared SNP Z-statistics as 1486 



the test statistic. The 1000 Genomes Project European reference panel was used to 1487 estimate LD between SNPs. 1488 Auxiliary files were downloaded from https://ctg.cncr.nl/software/magma on 1st 1489 September 2020. Gene location files for protein-coding genes were obtained from NCBI 1490 (ftp.ncbi.nlm.nih.gov): 1491 
gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz 1492 on 29/04/2015, and from: 1493 
genomes/Homo_sapiens/ARCHIVE/ANNOTATION_RELEASE.105/mapview/seq_gene.md.gz 1494 on 25/05/2016. 1495 The reference data files used to estimate LD are derived from Phase 3 of the 1000 Genomes 1496 Project. 1497 Competitive gene set enrichment analysis was conducted in MAGMA using a regression 1498 model that accounts for gene-gene correlations, to reduce bias resulting from clustering of 1499 functionally similar genes on the genome.29 Gene sets were queried from the databases 1500 KEGG 2019, Reactome 2016, GO Biological Process 2018, Biocarta 2016 and WikiPathways 1501 2019. The Benjamini-Hochberg procedure was used to control false discovery rate (<0.05). 1502 
Meta-analysis by information content 1503 In order to put these results in the context of existing biological data about host genes in 1504 SARS-CoV-2 replication and response, we performed meta-analysis of information content 1505 (MAIC)30 analysis integrating gene-level results from GenOMICC metaTWAS with an 1506 existing systematic review of host factors implicated in SARS-CoV-2 viral replication and 1507 host response in Covid-19.31 1508 We developed meta-analysis by information content (MAIC) to evaluate and integrate 1509 gene-level data from diverse sources.30 Multiple in vitro and in vivo studies have identified 1510 key host genes that either directly interact with SARS-CoV-2, or define the host response to 1511 SARS-CoV-2. We have previously conducted a systematic review of these studies.31 In order 1512 to put the new associations from this GWAS into context, we performed a data-driven 1513 meta-analysis of gene-level results combined with pre-existing biological data using meta-1514 analysis by information content (MAIC).30 1515 Briefly, MAIC aggregates both ranked and unranked lists and performs better than other 1516 methods, particularly when presented with heterogeneous source data. The input to MAIC 1517 is a list of named genes. MAIC assigns a score to each gene according to how many source 1518 datasets have reported that gene, and then creates a data-driven weighting for each data 1519 source (usually an individual experiment) based on the scores of the genes that are highly-1520 ranked on that list. This procedure is performed iteratively until the scores and weightings 1521 converge on stable values. In order to prevent a single type of experiment from unduly 1522 biasing the results, input gene lists are assigned to categories, and a rule applied that only 1523 one weighting from each category can contribute to the score for any given gene. 1524 



Tissue/functional genomic enrichment 1525 We downloaded the mean gene expression data summarised from RNA sequencing by the 1526 GTEx project (https://gtexportal.org/). The GTEx v7 data contain gene expressions of 1527 19,791 genes in 48 human tissues. Gene expression values were normalized to numbers of 1528 transcripts per million reads (TPM). To measure the expression specificity of each gene in 1529 each tissue, each gene expression specificity was defined as the proportion of its expression 1530 in each tissue among all the tissues, i.e., a value ranging between 0 and 1. SNPs within the 1531 10% most specifically expressed genes in each tissue were annotated for subsequent 1532 testing of heritability enrichment. For functional genomic enrichment analysis, we 1533 considered the inbuilt primary functional annotations v2.2 provided in the ldsc software 1534 (https://alkesgroup.broadinstitute.org/LDSCORE/) to annotated the SNPs. 1535 With the annotated SNPs, we used stratified LD score regression (S-LDSC)32 to test whether 1536 any human tissue or specific functional genomic feature is associated with severe Covid-19. 1537 Our GWAS summary statistics were harmonized by the munge_sumstats.py procedure in 1538 
ldsc. LD scores of HapMap3 SNPs (MHC region excluded) for gene annotations in each 1539 tissue were computed using a 1-cM window. The enrichment score was defined as the 1540 proportion of heritability captured by the annotated SNPs divided by the proportion of 1541 SNPs annotated. 1542 
Genetic correlations 1543 We applied both the LD score regression (LDSC)33 and high-definition likelihood (HDL)34 1544 methods to evaluate the genetic correlations between Severe Covid-19 and 818 GWASed 1545 phenotypes stored on LD-Hub.35 GWAS summary statistics were harmonized by the 1546 munge_sumstats.py procedure in the ldsc software. In the HDL analysis, we estimated the 1547 SNP-based narrow-sense heritability for each phenotype, and for the 818 complex traits 1548 GWASs, those with SNPs less than 90% overlap with the HDL reference panel were 1549 removed. 1550 
Genome build 1551 Results are presented using Genome Reference Consortium Human Build 37. Imputed 1552 genotypes and whole-genome sequence data were lifted over from Genome Reference 1553 Consortium Human Build 38 using Picard liftoverVCF mode from GATK 4.0 which is based 1554 on the UCSC liftover tool (chain file obtained from 1555 ftp://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh38_to_GRCh37.chain.g1556 z.36 1557 
Data Availability 1558 Full summary-level data in support of the findings of this study are available for download 1559 from https://genomicc.org/data. Individual level data can be analysed by qualified 1560 researchers in the ISARIC 4C/GenOMICC data analysis platform by application at 1561 https://genomicc.org/data. 1562 



The full GWAS summary statistics for the 23andMe discovery data set will be made 1563 available through 23andMe to qualified researchers under an agreement with 23andMe 1564 that protects the privacy of the 23andMe participants. Please visit 1565 https://research.23andMe.com/dataset-access/ for more information and to apply to 1566 access the data. 1567   1568 



Extended Data 1569 
Extended Data 1 1570 Baseline characteristics of 2244 patients included after quality control. Ancestry groups 1571 were determined by principal components analysis (Extended Data 4). Significant 1572 comorbidity was defined as the presence of functionally limiting comorbid illness in 1573 GenOMICC, in the assessment of the treating clinicians. In ISARIC 4C significant 1574 comorbidity refers to the presence of any chronic cardiac, lung, kidney, or liver disease, 1575 cancer or dementia. Age is shown as mean ± standard deviation. 1576 
Extended Data 2 1577 Q:Q plots for raw (unncorrected) p-values in each ancestry group in GenOMICC: gcc.eur - 1578 European; gcc.afr - African; gcc.eas - East Asian; gcc.sas - South Asian, together with trans-1579 ethnic meta-analysis (gcc.te.meta), and meta-analysis comprising GenOMICC, HGI and 1580 23andMe data (gcc.hgi.23m). ߣ - genomic inflation value. Note that some residual inflation 1581 is evident in the primary analysis in GenOMICC EUR. Repeating the analysis using more 1582 principal components (20PCs) as covariates did not improve the inflation (ߣ଴.ହ = 1.10). 1583 
Extended Data 3 1584 Representation of shared information content among data sources in MAIC analysis. Each 1585 experiment or data source is represented by a block on the outer ring of the circle; size of 1586 data source blocks is proportional to the summed information content of input list: i.e. the 1587 total contribution that this data source makes to the aggregate, calculated as the sum of the 1588 MAIC gene scores contributed by that list. Lines are colored according to the dominant data 1589 source. Data sources within the same category share the same color (see legend). The 1590 largest categories and data sources are labelled: Sun_2020,37 rosa_2020,38 zhang_2020,39 1591 langelier_2020,40 wei_ 2020,41 heaton_2020.42 An interactive version of this figure is 1592 available at https://baillielab.net/maic/covid]. In order to estimate the probability of the 1593 specific enrichment for GenOMICC metaTWAS, we randomly sampled from the baseline 1594 distribution of metaTWAS genes 1000 times, re-running MAIC with the same set of Covid-1595 19 systematic review inputs, but substituting the randomly sampled input list for the 1596 GenOMICC metaTWAS results. Modeling a normal distribution based on these empirical 1597 results, we estimated the probability of a MAIC enrichment this strong arising by random 1598 chance at p = 4.2 × 10ିଵଶ. 1599 
Extended Data 4 1600 PCA plots showing the distribution of all cases and controls for the first 10 principal 1601 components. Cases are shown as coloured closed circles: European (EUR, blue), African 1602 (AFR, red), East Asian (EAS, green), and South Asian (SAS, purple). Controls for each 1603 ancestry group are shown as closed circles in a lighter shade of the colour for that ancestry 1604 group. UK Biobank population background is shown as light grey closed circles. 1605 



Extended Data 5 1606 Effect sizes in ancestry groups within the GenoMICC study for the four replicated variants 1607 with genome-wide significant association in GenOMICC (a-d), and the ABO locus(e). Forest 1608 plots display effect size heterogeneity measures and p-value (p) and meta-analysis 1609 estimates with 95% confidence interval, and p-value (P-val) under a fixed effect model. 1610 Allele in bold is the reference allele for the reported effect (odds ratio). Sample sizes for the 1611 cases+controls analysed in the four groups were: 1092 for African (AFR), 894 for East 1612 Asian, 10055 for European and 1422 for south Asian (SAS) cases within GenOMICC. HGI - 1613 Covid-19 Host Genetics Initiative; 23m - 23andMe. Observed heterogeneity in effect size 1614 may be due to genuine differences between ancestry groups, or due to the limited 1615 statistical power in smaller groups (evident from the broad confidence intervals), or due to 1616 residual confounding. 1617 
Extended Data 6 1618 Replication in external data from Covid-19 HGI study. Risk – risk allele; Alt - alternative 1619 allele; OR - effect size (odds ratio) of the risk allele; CI - 95% confidence interval for the 1620 odds ratio; P - p-value, locus – gene nearest to the top SNP. Subscript identifiers show the 1621 data source: gcc - GenOMICC study, European ancestry, comparison with UK Biobank; 1622 hgi.23m - Covid-19 Host Genetics Initiative and 23andMe meta-analysis, used for 1623 replication. * Bonferroni significant values are highlighted and indicate external replication. 1624 
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