106 research outputs found

    Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets

    Full text link
    This paper poses a few fundamental questions regarding the attributes of the volume profile of a Limit Order Books stochastic structure by taking into consideration aspects of intraday and interday statistical features, the impact of different exchange features and the impact of market participants in different asset sectors. This paper aims to address the following questions: 1. Is there statistical evidence that heavy-tailed sub-exponential volume profiles occur at different levels of the Limit Order Book on the bid and ask and if so does this happen on intra or interday time scales ? 2.In futures exchanges, are heavy tail features exchange (CBOT, CME, EUREX, SGX and COMEX) or asset class (government bonds, equities and precious metals) dependent and do they happen on ultra-high (<1sec) or mid-range (1sec -10min) high frequency data? 3.Does the presence of stochastic heavy-tailed volume profile features evolve in a manner that would inform or be indicative of market participant behaviors, such as high frequency algorithmic trading, quote stuffing and price discovery intra-daily? 4. Is there statistical evidence for a need to consider dynamic behavior of the parameters of models for Limit Order Book volume profiles on an intra-daily time scale ? Progress on aspects of each question is obtained via statistically rigorous results to verify the empirical findings for an unprecedentedly large set of futures market LOB data. The data comprises several exchanges, several futures asset classes and all trading days of 2010, using market depth (Type II) order book data to 5 levels on the bid and ask

    Advances in approximate Bayesian computation and trans-dimensional sampling methodology

    Full text link
    Bayesian statistical models continue to grow in complexity, driven in part by a few key factors: the massive computational resources now available to statisticians; the substantial gains made in sampling methodology and algorithms such as Markov chain Monte Carlo (MCMC), trans-dimensional MCMC (TDMCMC), sequential Monte Carlo (SMC), adaptive algorithms and stochastic approximation methods and approximate Bayesian computation (ABC); and development of more realistic models for real world phenomena as demonstrated in this thesis for financial models and telecommunications engineering. Sophisticated statistical models are increasingly proposed for practical solutions to real world problems in order to better capture salient features of increasingly more complex data. With sophistication comes a parallel requirement for more advanced and automated statistical computational methodologies. The key focus of this thesis revolves around innovation related to the following three significant Bayesian research questions. 1. How can one develop practically useful Bayesian models and corresponding computationally efficient sampling methodology, when the likelihood model is intractable? 2. How can one develop methodology in order to automate Markov chain Monte Carlo sampling approaches to efficiently explore the support of a posterior distribution, defined across multiple Bayesian statistical models? 3. How can these sophisticated Bayesian modelling frameworks and sampling methodologies be utilized to solve practically relevant and important problems in the research fields of financial risk modeling and telecommunications engineering ? This thesis is split into three bodies of work represented in three parts. Each part contains journal papers with novel statistical model and sampling methodological development. The coherent link between each part involves the novel sampling methodologies developed in Part I and utilized in Part II and Part III. Papers contained in each part make progress at addressing the core research questions posed. Part I of this thesis presents generally applicable key statistical sampling methodologies that will be utilized and extended in the subsequent two parts. In particular it presents novel developments in statistical methodology pertaining to likelihood-free or ABC and TDMCMC methodology. The TDMCMC methodology focuses on several aspects of automation in the between model proposal construction, including approximation of the optimal between model proposal kernel via a conditional path sampling density estimator. Then this methodology is explored for several novel Bayesian model selection applications including cointegrated vector autoregressions (CVAR) models and mixture models in which there is an unknown number of mixture components. The second area relates to development of ABC methodology with particular focus on SMC Samplers methodology in an ABC context via Partial Rejection Control (PRC). In addition to novel algorithmic development, key theoretical properties are also studied for the classes of algorithms developed. Then this methodology is developed for a highly challenging practically significant application relating to multivariate Bayesian α\alpha-stable models. Then Part II focuses on novel statistical model development in the areas of financial risk and non-life insurance claims reserving. In each of the papers in this part the focus is on two aspects: foremost the development of novel statistical models to improve the modeling of risk and insurance; and then the associated problem of how to fit and sample from such statistical models efficiently. In particular novel statistical models are developed for Operational Risk (OpRisk) under a Loss Distributional Approach (LDA) and for claims reserving in Actuarial non-life insurance modelling. In each case the models developed include an additional level of complexity which adds flexibility to the model in order to better capture salient features observed in real data. The consequence of the additional complexity comes at the cost that standard fitting and sampling methodologies are generally not applicable, as a result one is required to develop and apply the methodology from Part I. Part III focuses on novel statistical model development in the area of statistical signal processing for wireless communications engineering. Statistical models will be developed or extended for two general classes of wireless communications problem: the first relates to detection of transmitted symbols and joint channel estimation in Multiple Input Multiple Output (MIMO) systems coupled with Orthogonal Frequency Division Multiplexing (OFDM); the second relates to co-operative wireless communications relay systems in which the key focus is on detection of transmitted symbols. Both these areas will require advanced sampling methodology developed in Part I to find solutions to these real world engineering problems

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore