981 research outputs found
Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy.
A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge
The Isgur-Wise function in a relativistic model for system
We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz
scalar) linear '' potential to estimate the light quark wavefunction for mesons in the limit . We use these wavefunctions to
calculate the Isgur-Wise function for orbital and radial
ground states in the phenomenologically interesting range . We find a simple expression for the zero-recoil slope, , where is the energy eigenvalue
of the light quark, which can be identified with the parameter
of the Heavy Quark Effective Theory. This result implies an upper bound of
for the slope . Also, because for a very light quark the size of the meson is determined mainly by the
``confining'' term in the potential , the shape of
is seen to be mostly sensitive to the dimensionless
ratio . We present results for the ranges of
parameters , and
light quark masses and compare to existing
experimental data and other theoretical estimates. Fits to the data give:
,
and [ARGUS
'93]; , and
[CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via
email upon reques
Light-cone QCD Sum Rules for the Baryon Electromagnetic Form Factors and its magnetic moment
We present the light-cone QCD sum rules up to twist 6 for the electromagnetic
form factors of the baryon. To estimate the magnetic moment of the
baryon, the magnetic form factor is fitted by the dipole formula. The numerical
value of our estimation is , which is in
accordance with the experimental data and the existing theoretical results. We
find that it is twist 4 but not the leading twist distribution amplitudes that
dominate the results.Comment: 13 page, 7 figures, accepted for publication in Euro. Phys. J.
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74784/1/j.1365-2958.1998.00890.x.pd
The flyby anomaly: a multivariate analysis approach
[EN] The flyby anomaly is the unexpected variation of the asymptotic post-encounter velocity of a spacecraft with respect to the pre-encounter velocity as it performs a slingshot manoeuvre. This effect has been detected in, at least, six flybys of the Earth but it has not appeared in other recent flybys. In order to find a pattern in these, apparently contradictory, data several phenomenological formulas have been proposed but all have failed to predict a new result in agreement with the observations. In this paper we use a multivariate dimensional analysis approach to propose a fitting of the data in terms of the local parameters at perigee, as it would occur if this anomaly comes from an unknown fifth force with latitude dependence. Under this assumption, we estimate the range of this force around 300 km .Acedo RodrĂguez, L. (2017). The flyby anomaly: a multivariate analysis approach. Astrophysics and Space Science. 362(2):1-7. doi:10.1007/s10509-017-3025-zS173622Acedo, L.: Adv. Space Res. 54, 788 (2014). 1505.06884Acedo, L.: Universe 1, 422 (2015a)Acedo, L.: Galaxies 3, 113 (2015b)Acedo, L.: Mon. Not. R. Astron. Soc. 463(2), 2119 (2016)Acedo, L., Bel, L.: Astron. Nachr. (2016). 1602.03669Adler, S.L.: Int. J. Mod. Phys. A 25, 4577 (2010). 0908.2414 . doi: 10.1142/S0217751X10050706Adler, S.L.: In: Proceedings of the Conference in Honour of Murray Gellimannâs 80th Birthday, p. 352 (2011). doi: 10.1142/9789814335614_0032Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. D 65(8), 082004 (2002). gr-qc/0104064 . doi: 10.1103/PhysRevD.65.082004Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J., Jordan, J.F.: Phys. Rev. Lett. 100(9), 091102 (2008). doi: 10.1103/PhysRevLett.100.091102Atchison, J.A., Peck, M.A., Streetman, B.J.: J. Guid. Control Dyn. 33, 1115 (2010). doi: 10.2514/1.47413Border, J.S., Pham, T., Bedrossian, A., Chang, C.: 2015 Delta Differential One-way Ranging in Dsn Telecommunication Link Design Handbook (810-005). http://deepspace.jpl.nasa.gov/dsndocs/810-005/210/210A.pdf . Accessed: 2016-11-17Burns, J.A.: Am. J. Phys. 44(10), 944 (1976). doi: 10.1119/1.10237Busack, H.-J.: arXiv e-prints 1312.1139 (2013)Butrica, A.J.: In: From Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners, p. 251 (1998)Cahill, R.T.: arXiv e-prints 0804.0039 (2008)Chamberlin, A., Yeomans, D., Giorgini, J., Chodas, P.: 2016 Horizons Ephemeris System. http://ssd.jpl.nasa.gov/horizons.cgi . Accessed: 2016-10-27Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond (1988)Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Science 265, 482 (1994). doi: 10.1126/science.265.5171.482Feng, J.L., Fornal, B., Galon, I., Gardner, S., Somolinsky, J., Tait, T.M.P., Tanedo, P.: Phys. Rev. Lett. 117, 071803 (2016). doi: 10.1103/PhysRevLett.117.071803Fischbach, E., Buncher, J.B., Gruenwald, J.T., Jenkins, J.H., Krause, D.E., Mattes, J.J., Newport, J.R.: Space Sci. Rev. 145, 285 (2009). doi: 10.1007/s11214-009-9518-5Folkner, W.M., Williamns, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: IPN Progress Report 42(196) (2014)Franklin, A., Fischback, E.: The Rise and Fall of the Fifth Force. Discovery, Pursuit, and Justification in Modern Physics, 2nd edn. Springer, New York (2016)Hackmann, E., LĂ€mmerzahl, C.: In: 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38, p. 3 (2010)Hafele, J.C.: arXiv e-prints 0904.0383 (2009)Iorio, L.: Sch. Res. Exch. 2009 807695 (2009). 0811.3924 . doi: 10.3814/2009/807695Iorio, L.: Astron. J. 142, 68 (2011a). 1102.4572 . doi: 10.1088/0004-6256/142/3/68Iorio, L.: Mon. Not. R. Astron. Soc. 415, 1266 (2011b). 1102.0212Iorio, L.: Galaxies 1, 192 (2013). 1306.3166Iorio, L.: Int. J. Mod. Phys. D 24, 1530015 (2015). 1412.7673Jouannic, B., Noomen, R., van den IJSel, J.A.A.: In: Proceedings of the 25th International Symposium on Space Flight Dynamics ISSFD, Munich (Germany), 2015Krasinsky, G.A., Brumberg, V.A.: Celest. Mech. Dyn. Astron. 90, 267 (2004)LĂ€mmerzahl, C., Preuss, O., Dittus, H.: In: Dittus, H., LĂ€mmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol. 349, p. 75 (2008). doi: 10.1007/978-3-540-34377-6_3McCulloch, M.E.: Mon. Not. R. Astron. Soc. 389, 57 (2008). 0806.4159 . doi: 10.1111/j.1745-3933.2008.00523.xPinheiro, M.J.: Phys. Lett. A 378, 3007 (2014). 1404.1101Pinheiro, M.J.: Mon. Not. R. Astron. Soc. 461(4), 3948 (2016)Rievers, B., LĂ€mmerzahl, C.: Ann. Phys. 523, 439 (2011). 1104.3985 . doi: 10.1002/andp.201100081Thompson, P.F., Abrahamson, M., Ardalan, S., Bordi, J.: In: 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, January 26â30, 2014, 2014. http://hdl.handle.net/2014/45519Turyshev, S.G., Toth, V.T.: Living Rev. Relativ. 13, 4 (2010). 1001.3686 . doi: 10.12942/lrr-2010-4Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.-C., Lok, S.M., Ellis, J.: Phys. Rev. Lett. 108(24), 241101 (2012). 1204.2507 . doi: 10.1103/PhysRevLett.108.241101Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 2nd edn. (2004)Williams, J.G., Turyshev, S.G., Boggs, D.H.: Phys. Rev. Lett. 93(26), 261101 (2004). gr-qc/0411113 . doi: 10.1103/PhysRevLett.93.26110
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- âŠ