83 research outputs found

    Proposal for Implementation of Green Roof Project Using the Wetland Technique

    Get PDF
    This work presents a study on methods of wetland systems and the design of a prototype of green roof design in a practical example, with the objective of presenting a sustainable technique for reuse of rainwater. The use of the wetland system as a technique for collecting and treating wastewater can be one of the possible solutions to the lack of potable water in large urban centres, since the system is capable of filtering rainwater. As a result, a proposed green roof design is presented using a wetland system built to retain and treat rainwater for reuse with non-potable purposes. This system, in addition to integrating landscape aspects of the environment, presents low cost of implementation and can be a viable alternative for water reuse. This study contributes to improve knowledge as this type of technique is not yet used in Brazil, allowing future work on the economic viability and construction of the prototype

    Genetic relationships between Candida albicans strains isolated from dental plaque, trachea, and bronchoalveolar lavage fluid from mechanically ventilated intensive care unit patients

    Get PDF
    Candida albicans often resides in the oral cavity of healthy humans as a harmless commensal organism. This opportunistic fungus can cause significant disease in critically ill patients, such as those undergoing mechanical ventilation in the intensive care unit (ICU) having compromised local airway defense mechanisms. The goal of this study was to determine the intra- and inter-patient genetic relationship between strains of C. albicans recovered from dental plaque, tracheal secretions, and the lower airway by bronchoalveolar lavage of patients undergoing mechanical ventilation. Three pulsed-field gel electrophoresis (PFGE) typing methods were used to determine the genetic relatedness of the C. albicans strains, including electrophoretic karyotyping (EK) and restriction endonuclease analysis of the genome using SfiI (REAG-S) and BssHII (REAG-B). The C. albicans isolates from dental plaque and tracheo-bronchial sites from the same patient were genetically indistinguishable and retained over time, whereas strains from different patients usually separated into different genotypes. Among the three methods, REAG-B proved to be the most discriminatory method to differentiate isolates. The finding of genetically similar strains from the oral and tracheo-bronchial sites from the same patient supports the notion that the oral cavity may serve as an important source for C. albicans spread to the trachea and lung of mechanically ventilated patients

    Fibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat

    Get PDF
    Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applying tensile forces at the N- and C-termini of fibronectin domains; however, physiological loading is likely focused on the solvent-exposed RGD loop in the 10th type-III repeat of fibronectin (10FNIII), which mediates binding to cell-surface integrin receptors. In this work we used steered molecular dynamics to study the mechanical unfolding of 10FNIII under tensile force applied at this RGD site. We demonstrate that mechanically unfolding 10FNIII by pulling at the RGD site requires less work than unfolding by pulling at the N- and C- termini. Moreover, pulling at the N- and C-termini leads to 10FNIII unfolding along several pathways while pulling on the RGD site leads to a single exclusive unfolding pathway that includes a partially unfolded intermediate with exposed hydrophobic N-terminal ÎČ-strands – residues that may facilitate fibronectin self-association. Additional mechanical unfolding triggers an essential arginine residue, which is required for high affinity binding to integrins, to move to a position far from the integrin binding site. This cell traction-induced conformational change may promote cell detachment after important partially unfolded kinetic intermediates are formed. These data suggest a novel mechanism that explains how cell-mediated forces promote fibronectin fibrillogenesis and how cell surface integrins detach from newly forming fibrils. This process enables cells to bind and unfold additional fibronectin modules – a method that propagates matrix assembly

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Economic optimization of the energy supply for a logistics center considering variable-rate energy tariffs and integration of photovoltaics

    No full text
    The energy supplied by photovoltaic (PV) panels connected to the grid creates more flexibility for energy management; however, oversizing the PV system may result in an energy surplus, an essential factor to be considered during energy efficiency optimization. The economic analysis of energy supply systems for buildings and industry should include a detailed feasibility analysis and a life cycle perspective. Simulations were performed to quantify the potential savings when the excess of PV energy (surplus) is supposed to be exported to the grid by considering the net metering and net billing approaches. Our objective was to evaluate the electrical demand of a logistics center with pre-design modeling and simulation, and determine the adequate system configurations by considering the life cycle costing (LCC). We established a baseline and three alternative economic scenarios for optimization. Combining the use of TRNSYS 180 Simulation Studio and its optimization library component, GenOp (Generic Optimization Program), we simulated different options of grid energy contracts considering the variable tariffs and the integration with PVs. Based on the LCC, a single-objective optimization (SOO) process was performed. This approach allowed us to envisage possible configurations, reducing up to a quarter of annual grid energy consumption that represents savings of around 21% for the LCC in a timeframe of 20 years, reaching up to 39% when the export of the PV surplus energy is considered. The payback period of investments is below six years for the optimal scenarios.ISSN:2076-341

    Personal mobility and manipulation appliancedesign, development, and initial testing

    No full text
    The ability to perform activities of daily living and mobility-related activities of daily living are substantial indicators of one's ability to live at home and to participate in one's community. Technologies to assist with mobility and manipulation are among the most important tools that clinicians can provide to people with disabilities to promote independence and community participation. For people with severe disabilities involving both the upper and lower extremities, there are few systems that provide practical and coordinated assistance with mobility and manipulation tasks. The personal mobility and manipulation appliance (PerMMA) was created in response to goals set forth by a team of clinicians and people with disabilities. © 2012 IEEE
    • 

    corecore