195 research outputs found

    Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest

    Get PDF
    Post-fire salvage logging is a common silvicultural practice around the world, with the potential to alter the regenerative capacity of an ecosystem and thus its role as a source or a sink of carbon. However, there is no information on the effect of burnt wood management on the net ecosystem carbon balance. Here, we examine for the first time the effect of post-fire burnt wood management on the net ecosystem carbon balance by comparing the carbon exchange of two treatments in a burnt Mediterranean coniferous forest treated by salvage logging (SL, felling and removing the logs and masticating the woody debris) and Non-Intervention (NI, all trees left standing) using eddy covariance measurements. Using different partitioning approaches, we analyze the evolution of photosynthesis and respiration processes together with measurements of vegetation cover and soil respiration and humidity to interpret the differences in the measured fluxes and underlying processes. Results show that SL enhanced CO2 emissions of this burnt pine forest by more than 120 g C m−2 compared to the NI treatment for the period June–December 2009. Although soil respiration was around 30% higher in NI during growing season, this was more than offset by photosynthesis, as corroborated by increases in vegetation cover and evapotranspiration. Since SL is counterproductive to climate-change and Kyoto protocol objectives of optimal C sequestration by terrestrial ecosystems, less aggressive burnt wood management policies should be considered.This work was financed by INIA Project SUM2006-00010-00-00, by the Autonomous Organism of National Parks (MMA) Project 10/2005 and in part by the Spanish national CO2 flux tower network (Carbored-II; CGL2010-22193-C04-02), CGL 2008-01671, Consolider-Ingenio MONTESCSD2008-00040 and the European Community 7th 9 Framework Programme Project GHG-Europe (FP7/2007-2013; Grant Agreement 244122)

    TBCRC 030: a phase II study of preoperative cisplatin versus paclitaxel in triple-negative breast cancer: evaluating the homologous recombination deficiency (HRD) biomarker

    Get PDF
    Background: Cisplatin and paclitaxel are active in triple-negative breast cancer (TNBC). Despite different mechanisms of action, effective predictive biomarkers to preferentially inform drug selection have not been identified. The homologous recombination deficiency (HRD) assay (Myriad Genetics, Inc.) detects impaired double-strand DNA break repair and may identify patients with BRCA1/2-proficient tumors that are sensitive to DNA-targeting therapy. The primary objective of TBCRC 030 was to detect an association of HRD with pathologic response [residual cancer burden (RCB)-0/1] to single-agent cisplatin or paclitaxel. Patients and methods: This prospective phase II study enrolled patients with germline BRCA1/2 wild-type/unknown stage I–III TNBC in a 12-week randomized study of preoperative cisplatin or paclitaxel. The HRD assay was carried out on baseline tissue; positive HRD was defined as a score ≥33. Crossover to an alternative chemotherapy was offered if there was inadequate response. Results: One hundred and thirty-nine patients were evaluable for response, including 88 (63.3%) who had surgery at 12 weeks and 51 (36.7%) who crossed over to an alternative provider-selected preoperative chemotherapy regimen due to inadequate clinical response. HRD results were available for 104 tumors (74.8%) and 74 (71.1%) were HRD positive. The RCB-0/1 rate was 26.4% with cisplatin and 22.3% with paclitaxel. No significant association was observed between HRD score and RCB response to either cisplatin [odds ratio (OR) for RCB-0/1 if HRD positive 2.22 (95% CI: 0.39–23.68)] or paclitaxel [OR for RCB-0/1 if HRD positive 0.90 (95% CI: 0.19–4.95)]. There was no evidence of an interaction between HRD and pathologic response to chemotherapy. Conclusions: In this prospective preoperative trial in TNBC, HRD was not predictive of pathologic response. Tumors were similarly responsive to preoperative paclitaxel or cisplatin chemotherapy

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011

    Composition of woody species in a dynamic forest-woodland-savannah mosaic in Uganda: implications for conservation and management

    Get PDF
    Forest¿woodland¿savannah mosaics are a common feature in the East African landscape. For the conservation of the woody species that occur in such landscapes, the species patterns and the factors that maintain it need to be understood. We studied the woody species distribution in a forest¿woodland¿savannah mosaic in Budongo Forest Reserve, Uganda. The existing vegetation gradients were analyzed using data from a total of 591 plots of 400 or 500 m2 each. Remotely sensed data was used to explore current vegetation cover and the gradients there in for the whole area. A clear species gradient exists in the study area ranging from forest, where there is least disturbance, to wooded grassland, where frequent fire disturbance occurs. Most species are not limited to a specific part of the gradient although many show a maximum abundance at some point along the gradient. Fire and accessibility to the protected area were closely related to variation in species composition along the ordination axis with species like Cynometra alexandri and Uvariopsis congensis occurring at one end of the gradient and Combretum guenzi and Lonchocarpus laxiflorus at the other. The vegetation cover classes identified in the area differed in diversity, density and, especially, basal area. All vegetation cover classes, except open woodland, had indicator species. Diospyros abyssinica, Uvariopsis congensis, Holoptelea grandis and all Celtis species were the indicator species for the forest class, Terminalia velutina and Albizia grandbracteata for closed woodland, Grewia mollis and Combretum mole for very open woodland and Lonchocarpus laxiflorus, Grewia bicolor and Combretum guenzi for the wooded grassland class. Eleven of the species occurred in all cover classes and most of the species that occurred in more than one vegetation cover class showed peak abundance in a specific cover class. Species composition in the study area changes gradually from forest to savannah. Along the gradient, the cover classes are distinguishable in terms of species composition and vegetation structure. These classes are, however, interrelated in species composition. For conservation of the full range of the species within this East African landscape, the mosaic has to be managed as an integrated whole. Burning should be varied over the area with the forest not being burnt at all and the wooded grassland burnt regularly. The different vegetation types that occur between these two extremes should be maintained using a varied fire regim

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation
    corecore