
-1

Composition of woody species in a dynamic

forest–woodland–savannah mosaic in Uganda:

implications for conservation and management

GRACE NANGENDO1,*, HANS TER STEEGE2 and
FRANS BONGERS3
1International Institute for Geo-information Science and Earth Observation, P.O Box 6, 7500 AA

Enschede, The Netherlands; 2National Herbarium Netherlands, Utrecht University Branch, Heidel-

berglaan 2, 3584 CS Utrecht, The Netherlands; 3Forest Ecology and Forest Management Group,

Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA Wageningen,

The Netherlands; *Author for correspondence (phone: +31-53-4874444; fax: +31-53-4874388)

Received 21 December 2004; accepted in revised form 19 July 2005

Key words: Budongo Forest Reserve, Fire disturbance, Forest–woodland–savannah mosaics,

Species gradient, Woody species composition

Abstract. Forest–woodland–savannah mosaics are a common feature in the East African

landscape. For the conservation of the woody species that occur in such landscapes, the species

patterns and the factors that maintain it need to be understood. We studied the woody species

distribution in a forest–woodland–savannah mosaic in Budongo Forest Reserve, Uganda. The

existing vegetation gradients were analyzed using data from a total of 591 plots of 400 or 500 m2

each. Remotely sensed data was used to explore current vegetation cover and the gradients there in

for the whole area. A clear species gradient exists in the study area ranging from forest, where there

is least disturbance, to wooded grassland, where frequent fire disturbance occurs. Most species are

not limited to a specific part of the gradient although many show a maximum abundance at some

point along the gradient. Fire and accessibility to the protected area were closely related to vari-

ation in species composition along the ordination axis with species like Cynometra alexandri and

Uvariopsis congensis occurring at one end of the gradient and Combretum guenzi and Lonchocarpus

laxiflorus at the other. The vegetation cover classes identified in the area differed in diversity,

density and, especially, basal area. All vegetation cover classes, except open woodland, had indi-

cator species. Diospyros abyssinica, Uvariopsis congensis, Holoptelea grandis and all Celtis species

were the indicator species for the forest class, Terminalia velutina and Albizia grandbracteata for

closed woodland, Grewia mollis and Combretum mole for very open woodland and Lonchocarpus

laxiflorus, Grewia bicolor and Combretum guenzi for the wooded grassland class. Eleven of the

species occurred in all cover classes and most of the species that occurred in more than one

vegetation cover class showed peak abundance in a specific cover class. Species composition in the

study area changes gradually from forest to savannah. Along the gradient, the cover classes are

distinguishable in terms of species composition and vegetation structure. These classes are, how-

ever, interrelated in species composition. For conservation of the full range of the species within

this East African landscape, the mosaic has to be managed as an integrated whole. Burning should

be varied over the area with the forest not being burnt at all and the wooded grassland burnt

regularly. The different vegetation types that occur between these two extremes should be main-

tained using a varied fire regime.
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Introduction

Large areas of East Africa are covered with forest–woodland–savannah (FWS)
mosaics. Fire, both of natural and anthropogenic origin, is typical for the
woodland–savannah part of the mosaic (Walter 1985). The fresh grass that
regrows after fire is advantageous for the many ungulates of East Africa and
many of these ecosystems are, therefore, managed mainly for wildlife conser-
vation. Forests, on the other hand, are managed for timber production, for
woody species conservation, as water catchment areas, and for their aesthetic
values. Consequently the forest and the woodland–savannah areas, even where
they occur together as a mosaic, are often treated as independent conservation
entities.

Uganda is has large tracts of FWS mosaics. Several of these FWS mosaics
have been enlisted for demarcation as conservation areas because of their high
biodiversity value (Forest Department Uganda 1999), yet surveys in such areas
have focused on the forest and have not taken the woodland areas into
account. Although forests are arguably richer in species (Sheil and Burslem
2003), this does not do justice to the specific flora and fauna found in wood-
lands that are adjacent to or within the forests.

In our study area, Budongo Forest Reserve, fire has been used as a man-
agement tool in the woodland areas for hundreds of years (Paterson 1991). The
local people, resident on the outskirts of the forest reserve, set most of the fires.
Changes in management of the area, which resulted in more active policing of
the protected area and the establishment of a gate entrance to the only access
route, have led to less use of fire in the woodland areas. As a consequence,
forest vegetation is now colonizing the woodland areas (van Straaten 2003). It
is unknown to what extent accessibility to the protected area acts as a con-
trolling factor. As specific floristic information for the area is lacking, it is as
yet unknown what the effects of continuing reforestation will be on the tree
diversity of Budongo Forest Reserve. In this paper, we explore the current
status of the forest in terms of species composition and diversity, and how it is
distributed in space.

Studies that have explored the species interrelationship within FWS mosaics
are rare (Hovestadt et al. 1999). Most studies have concentrated on species
distribution within the forest (Eggeling 1947; Sheil et al. 2000; Mwami and
McNeilage 2003; Eilu et al. 2004) or the woodland–savannah (Swaine et al.
1992; Schwilk et al. 1997; Schwartz and Caro 2003; Li et al. 2004). Previous
data of Budongo forest (Eggeling 1947) stimulated the emergence of the
important Intermediate Disturbance Hypothesis (Connell 1978), which states
that in a landscape, species diversity is highest in areas with an intermediate
level of disturbance. In areas of high disturbance and areas of low or no
disturbance, species diversity is low. At the time of Eggeling’s (Eggeling 1947)
study, frequent burning had arrested the forest succession into the woodland.
Eggeling’s gradient mainly reflects succession within the forested area. With the
increased control of burning over the years, resulting in variation of burning
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with some areas burnt more often than others, forest succession into the
woodland became possible. Hence, an added component of our study is the
extension of a historically important succession gradient, exploring its range
into the woodland areas.

In our study, special emphasis was placed on how the existing vegetation
types can be characterized in terms of the woody plants and the implication of
the observed species patterns to conservation of woody plants in such land-
scapes. The hypothesis made is that all the vegetation types that exist within the
study area, and the species they support, are an integral part of a composi-
tional/successional gradient that stretches across the FWS mosaic. We asked
the following questions: Is it possible to quantify the gradient? What species are
specific for certain areas? How does the species composition vary along the
succession gradient? Can the gradient be explained in relation to environmental
variables?

A further question we address is whether a satellite image classification of the
area can be used to adequately map the vegetation and its composition in the
area. For this we made use of discrete vegetation cover classes, obtained from a
classification carried out using a combination of spectral information and
environmental variables’ information (Nangendo et al., submitted). The veg-
etation classes are considered a proxy of the vegetation types found in the area.
Standard vegetation indices (NDVI and Tasseled Cap vegetation index) based
on the same image were also compared in their ability to explain the observed
gradient. Finally, we discuss the conservation and management implications of
our results.

Materials and methods

Study area

The work was carried out in the northern part of Budongo Forest Reserve in
north-western Uganda. The area is located between 1�35¢ and 1�55¢ N and
31�18¢ and 31�42¢ E. It receives between 1397 and 1500 mm of rain annually on
100 to 150 days. There are two main forest blocks: the main Budongo Forest
block and the Kaniyo-Pabidi Forest block (Figure 1). A woodland area,
interspersed with forest patches, commonly referred to as Kaniyo-Pabidi
woodland, separates these two blocks.

The underlying geology of the Budongo Forest is Precambrian origin con-
sisting of high-grade metamorphic rocks of the 2.9 billion-year-old granulite
group (van Straaten 1976). The soils over 90% of the study area are orthic
Ferralsols: highly weathered, deep, well drained soils with low pH. The
remaining 10% of the area has typically shallow soils, called Lithosols. These
soils are mainly found on hilltop regions and are predominantly underlain by
rocks. In river valleys, eutric Fluvisols are present.
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In the woodlands, fire has been prevalent for hundreds of years (Paterson
1991). The woodland burning was initially carried out by the local people for
purposes of hunting and refreshing grass for both domestic and wild ungulates
(Buechner and Dawkins 1961). With the transfer of the control of the wood-
lands from the local people (Bunyoro Kingdom) to the central government
(Forest Department) in 1968, measures to control burning were put in place
(Forest Department Uganda 1997). These were not very effective, however,
until the establishment of the joint management between Forest Department
and Uganda Wildlife Authority in the mid 1980s. Fewer, and smaller, areas are
now burnt and the burning is also less frequent. The woodland is therefore
heterogeneous and made up of vegetation patches at varying stages of recovery
since they were last burnt.

Data collection

Data was collected from 591 plots, 266 of which had an area of 400 m2 and
326 with an area of 500 m2. All data were collected during the same period
(August–October 2002). Along a transect, perpendicular lines were laid every
300 m. Along each perpendicular line, data were collected at every 75 m. For
sites 1–5, a plot size of 400 m2 was used (Figure 2), while for sites a–e, it was
500 m2. Based on a 2002 satellite image of the study area, sites 1–5 were
located in areas that showed a similar spectral reflectance, whereas sites a–e
were located in areas that showed varying spectral reflectance. The variation

Figure 1. Map of study area location.
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Figure 2. The location of the data collection points. 1, 2, 3, 4 and 5 are locations where the plots

were 400 m2 and a, b, c, d, e and f are locations where the plot size was 500 m2.
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of the site locations was to ensure that we capture as much as possible of the
species variation within the area. In each plot, the following data were col-
lected:
• Plot coordinates
• Species names, diameter at breast height (DBH) for all woody plants ‡10 cm
DBH, measured at 130 cm. If the tree was buttressed and abnormal at
130 cm, the diameter was measured just above the buttress where the stem
assumes a near cylindrical shape.

• Canopy cover percentage, using a canopy densiometer (Robert E: Lemmon,
Forest Densiometers, Oklahoma, USA), following the provided guidelines.
Four measurements were taken in each plot and an average of these mea-
surements was calculated to determine the final canopy cover of the plot.

• A fire indicator value. The fire indicator value was based on several factors
(1) the degree of scorching on the woody stems i.e. if it was fresh or old, (2) if
there existed remains of burnt grass in the undergrowth and (3) whether fresh
ash was found in the area. The last two factors were used to confirm areas
with recent fire. Plots with fresh fire scorching on the woody stems, remains
of burnt grass or ash were recorded as ‘recent burns’ and labelled class 2.
Plots with old signs of fire were labelled class 1 (old fires) and plots with no
sign of fire were labelled class 0 (no fire).
Species identification was based on Eggeling and Dale (1952) and Hamil-

ton (1991). Samples of the species that could not be clearly identified in the
field by the botanists on the team (Israel Tinka and Hezekias Ddumba) were
sent to the Uganda National Herbarium, Makerere University, where they
were identified.

Data preparation

A Detrended Correspondence Analysis (DCA) (Multi-Variate Statistical
Package MVSP 3.11, Kovach Computing Services, UK) was run using the two
data sets i.e. for the 400 m2 plots and the 500 m2 plots. When the plot scores of
DCA axis one and two were plotted together, using a separate symbol for each
plot size, the data for the two sets fell within the same range i.e. they showed
near to identical results and complemented each other. As the plots also
overlap spatially, it was therefore decided to pool the two data sets. Expressing
density as the number of trees per 1000 m2, the abundance values were cal-
culated for each plot. Plots with less than 10 individuals were removed from the
data. As the larger plots have more individuals and thus capture more species
on average than the smaller plots, rare species, defined as those having a total
of less than 25 individuals, were also removed from the data set. The final
dataset consisted of 491 plots with 45 species.

From the DBH values measured in the field, basal area (BA, m2 ha�1) was
calculated for each plot, including all trees of the actual plot data.
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Remote sensing

Values of the Normalized Difference Vegetation Index (NDVI), which is well
correlated with vegetation biomass (Tucker 1979) and Tasseled Cap vegetation
index (TC), which has a good correlation with forest stand density (Crist et al.
1986), were extracted for each plot from the respective vegetation index maps
calculated using a 2002 Landsat ETM+ satellite image. These values were used
for further analyses. Vegetation indices provide values that are indicative of the
spectral reflectance of the vegetation at a given place. Depending on the sa-
tellite image bands selected and the ratios used, each vegetation index measure
will result in a different value for a specific plot. Because there is a high vari-
ation in reflectance over a forested area, the resultant pixel values for a given
index vary from point to point resulting in continuous values over the forested
area.

NDVI used two bands, red and near infrared. Tasseled Cap incorporates
more information by using six different light bands (blue, green, red, near
infrared and far infrared). Depending on the ratios of combination of the six
bands, different multispectral features are obtained (Crist and Cicone 1984).
The first three features usually account for most of the variation in a single date
image (Collins and Woodcock 1996). These three have been labelled bright-
ness, greenness and wetness, respectively. All three were used in this study.

Vegetation cover class values for each plot were extracted from a vegetation
cover map of the area obtained from an earlier classification (Nangendo et al.,
submitted) of a Landsat ETM+ image using both spectral and environmental
information. All 592 plots were separated into the discrete cover classes (forest,
closed woodland, open woodland, very open woodland and wooded grass-
land). Having used a Landsat satellite image, with a pixel size of 30 m, in the
classification, the minimum area belonging to a specific cover class is 900 m2.
Species composition, diversity and forest structure were analyzed in consid-
eration of the cover class in which each plot fell with the assumption that these
vegetation cover classes were representative of the major vegetation variation
within the area.

Accessibility

We used distance from the southern forest boundary to each plot as a surrogate
for accessibility, by the local people, to the sampled areas. The conservation
area gate marks the southern boundary between the conservation area and the
local people’s settlements. From here on, distance will be referred to as ‘dis-
tance from gate.’ During fieldwork, it was observed that because of the gate
control, the local people entered the protected area at other points along the
boundary of the protected area, instead of using the road. Having recorded the
coordinate of the gate location, an east–west line was established at this point
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and distance for each plot was calculated based on this line. This provided the
plot distance relative to the conservation area gate.

Analysing the gradient

We used Detrended Correspondence Analysis to explore the species distribu-
tion within the study area. To determine which variables best explained the
gradient in species composition, the plot scores on the DCA axes were related
to the site variables using stepwise regression.

Linking remote sensing with the gradient

Two approaches were used in analysing remote sensing outputs. First, plot
values obtained from vegetation indices (such as TC), which are continuous
classifiers, were compared to DCA plot scores. To identify the vegetation index
that best explained the gradient, a non-linear regression method was used since
the scatter plot of the DCA vs. the index values showed a non-linear rela-
tionship. Second, discrete classes obtained from an earlier classification
(Nangendo et al., submitted) were analyzed for differences in terms of species
composition and diversity and, in basal area. Although the same satellite image
was used for the classification and for the creation of the index maps, the plots
used for the classification are not the same as those used in the analysis.

Differences in composition

We used the Multiple-Response Permutation Procedure (MRPP) and Indicator
Species Analysis of PC-ORD (McCune and Mefford 1999; McCune et al. 2002)
to test for differences in composition between the different vegetation units.
MRPP, a non-parametric procedure was used for testing the hypothesis that no
difference existed in composition between two or more groups of plots. For
distance in composition between the plots, Relative Sørensen (Bray–Curtis)
was used because it takes into account both composition (presence–absence of
species) and abundance. For weighting option: CI = nI/

P
nI was used, which

is the most widely used and recommended measure. CI is the weight and is
dependent on the number of items in a group, say I, and nI is the number of
items in group I. The software uses 9999 permutations in the test. Two tests
were carried out based on a priori selection: cover classes and fire classes. An
Indicator Species Analysis was also carried out on the basis of these two
classifications.

Indicator species Analysis combines information on the concentration of
species abundance in a particular group (transect) and the faithfulness
of occurrence of the species in that group. A perfect indicator species of a
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particular group should always be present and should also be exclusive to that
group (not occurring in other groups). From the analysis, an indicator value is
obtained for each species in each group (Dufrêne and Legendre 1997; McCune
and Mefford 1999; McCune et al. 2002). The indicator values are tested for
statistical significance using a Monte Carlo randomization. Species diversity
was expressed as species dominance, which was calculated using the Simpson
Index (SI) (Magurran 1988), and Fisher’s a (Fa), (Fisher et al. 1943). These
indices have low sensitivity to plot size differences (Magurran 1988). Differ-
ences between plots in different fire and cover classes with respect to SI, Fa and
BA were tested with ANOVA using SPSS (SPSS 10, SPSS Inc. USA).

To check for variation in species abundance and diversity in relation to
disturbance, graphs of number of species per 100 m2 and Fisher’s a per plot
were made. Having the assumption, which was also backed by field observa-
tion, that disturbance was lowest in the forest class and highest in the wooded
grassland class, plots were arranged according to vegetation cover classes. The
order of plot arrangement was; forest (1–147), closed woodland (148–310),
open woodland (311–459), very open woodland (460–555) and wooded
grassland (556–592). Within each vegetation cover class the plots are randomly
ordered.

Results

Species distribution

A total of 26,076 individuals from 121 species, 89 genera, and 38 families were
recorded on the 591 plots. The most species-rich family was Moraceae with
11% of all species found (13), followed by Euphorbiaceae and Mimosaceae
with 8% each (10). The most species-rich genus was Ficus with 5% of all
species (6), followed by Acacia, Albizia, Celtis and Combretum with 3% each
(4). Nine species or 7% of all species could not be identified to genus level. A
full species list with abundances is given in Appendix 3. The most abundant
genus, in terms of total individuals encountered, was Combretum, with close to
16% of all individuals, followed by Terminalia (14%), Grewia (13), Stereo-
spermum (6%), and Uvariopsis (6%).

The DCA analysis on combined and trimmed data (491 plots and 45 species)
ordered the plots mainly along 1 axis (Figure 3a). This axis had a relatively
high eigenvalue (0.465) suggesting significant woody species variation along
this axis. The eigenvalue for the second axis was 0.172. With 491 plots in-
cluded, axis 1 explained 11.8% of the variation. There was, however, one
outlier plot strongly influencing the second axis. This outlier plot was domi-
nated by Sapium elipticum, a species that rarely occurred in the study area.
After removing this plot, axis 1 explained 12.5% of the variation and axis 2 an
additional 4.6%. Plots with a low axis score (close to 0) are found in the forest
area, plots with a high score (>7) are found in the most open areas. As most of
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Figure 3. DCA graph showing (a) plot composition variation along the first two ordination axes

(b) species composition variation along the first two ordination axes.
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the discussion here on will pertain to axis 1, the main gradient, we will
abbreviate ‘DCA axis 1 plot scores’ to ‘DCA scores.’

The species plot (Figure 3b) also shows most of the variation along the
first axis. The effect of the second axis is only evident close to zero along
axis 1, the forest side, where there appear to be two groups (the same can be
said for the plot scores). Based on this interpretation the species can be
divided into three groups; A, B and C (Figure 3b). Groups A and B occur
within the forest area and group C, probably starting at the forest edge,
stretches through to the woodland area. Species found in group A include
Cynometra alexandri, Diospyros abyssinica and Khaya anthotheca. Group B
species include Uvariopsis congensis, Celtis wightii, Holoptelea grandis
and Funtumia elastica. And species found in group C include Albizia
grandibracteata, Terminalia velutina, Grewia mollis, Combretum molle and
Lonchocarpus laxiflorus.

Fire indicator best explained the gradient in species composition followed by
slope and then distance from gate. Using the stepwise regression analysis, fire
alone had r2 of 0.324 with a standard error of 1.395. Including slope in the
model the r2 was raised to 0.354 and the standard error reduced to 0.365. When
distance from gate was included, the r2 increased to 0.359 and the standard
error was reduced to 1.361. Vegetation cover type was not significant and so it
does not appear in the results table. Relating the site variables individually to
DCA (results not shown) showed that while all the other variables had a
positive correlation with the DCA, distance from gate had a negative corre-
lation.

Species composition and vegetation indices

All the vegetation-indices explained well the DCA variation. TC-wetness and
TC-greenness showed the best relationship with DCA scores with r2 of 0.73
and 0.70, respectively. TC-brightness had the lowest value (r2 = 0.46). NDVI
had an r2 of 0.64.

Species distribution in discrete vegetation cover classes

The classes derived from the analyses of the satellite image differed consider-
ably in their DCA scores (Figure 4a and b). Plots of the ‘No-fire’ class had
consistently low DCA scores, whereas the plots from the class ‘Recent-fire’
have high DCA scores. Plots from the class ‘Old-fire’ were intermediate. The
Fire classes also differed considerably in their TC-greenness values. Conse-
quently a combination of DCA scores and TC-greenness value segregated the
fire classes well.

A similar result was found for the cover classes. These classes are segregated
both by their DCA scores and TC-greenness values (Figure 4b).
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Plots of different fire classes also differed significantly in their species
composition (MRPP, A = 0.061, p > 0.0001). Uvariopsis congensis, Celtis
wightii, Diospyros abyssinica, Phyllanthus discoideus, Celtis zenkeri, Alstonia
boonei, Cynometra alexandri and Trichilia prieuriana, all exclusively occur in
the No-fire class i.e. relative abundance (RA) equals 100% for each of the
species. The indicator species analysis also identified the above named species
as indicators for the No-fire class i.e. significant p values (Appendix 1). Al-
though no species had 100% relative frequency in any class, Terminalia velutina
and Grewia mollis had very high relative frequency, 90 and 87%, in Old-fire
and Recent-fire classes, respectively. For the Old-fire class, species that had
significant species indicator values include Terminalia velutina, Stereospermum
kunthianum and Piliostigma thoningii. And for the Recent-fire, species that had
significant species indicator values include Grewia mollis, Annona senegalensis,
Combretum molle, Loncocarpus laxiflorus and Grewia bicolor.

Plots of different cover classes also differed significantly in their species
composition (MRPP, A = 0.148, p > 0.0001). Of the species exclusively
found in the no fire area, Uvariopsis congensis, Celtis wightii, Celtis zenkeri,
Cynometra alexandri and Trichilia prieuriana were also exclusively found in the

Figure 4. DCA axis 1-Tasseled Cap relationship as subdivided by (a) fire regimes and (b)

vegetation cover classes.
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forest area. In addition, Pterygota mildbreadii was also exclusively found in the
forest (Appendix 2). Funtumia elastica, Uvariopsis congensis and Celtis wightii
had the highest relative frequency in the forest class; 55, 54 and 50%,
respectively. Species with the highest relative frequency in the closed woodland
are Terminalia velutina and Grewia mollis with 97 and 70%, respectively. In the
open woodland plots, Terminalia velutina and Grewia mollis still had the
highest relative frequency of 85 and 88%, respectively. In the very open
woodland, Grewia mollis occurred in 99% of the plots while in the wooded
grassland, Stereospermum kunthianum had the highest relative frequency of
67%. Overall, Grewia mollis in the very open woodland had the highest relative
frequency i.e. it occurred in 99% of the closed woodland plots.

Whereas in the forest some of the species that had the highest relative fre-
quency are part of those that had the highest relative abundance, it is different
for the other cover classes. In the closed woodland, the species with the highest
relative abundance were Bridelia michrantha (70%), Albizia grandibracteata
(55%) and Maesopsis eminii (55%). In the open woodland there were no
species with relative abundance above 50%. The highest was Ficus exasperata
with 48%. In the very open woodland, Combretum molle, Securinega virosa and
Dombeya rotundifolia had the highest relative abundance with 74, 71 and 75%,
respectively. Combretum guenzi exclusively occurred in the wooded grassland.
Other species with high relative abundance in the wooded grassland
were Combretum binderanun, Grewia bicolor, Lonchocarpus laxiflorus and
Hymenocardia acida with 78, 66, 58 and 50%, respectively.

Most of the species identified as belonging to groups A and B e.g. Cynometra
alexandri, Khaya anthotheca, Diospyros abyssinica, Uvariopsis congensis and
Holoptelea grandis (Figure 3b) were also identified through indicator species
analysis as good indicators for the No-fire class. Of these, Diospyros abyssinica,
Uvariopsis congensis, Holoptelea grandis and all Celtis species were also good
indicators of the forest class (Appendix 2). The species in group C belonged
both to Old-fire and Recent-fire classes. Considering the cover classes,
Terminalia velutina and Albizia grandbracteata were good indicators for closed
woodland, Grewia mollis and Combretum mole for very open woodland and
Lonchocarpus laxiflorus, Grewia bicolor and Combretum guenzi were good
indicators for the wooded grassland class. Several of these species e.g.
Uvariopsis congensis, Terminalia velutina and Grewia mollis have distinctively
high abundance in specific areas along the gradient (Figure 5).

Although the closed woodland had the largest area sampled followed by the
open woodland, the forest had the highest number of species and genera
identified (Appendix 3). The lowest number of species and genera was found in
the wooded grassland. The highest ratio of species to genera was in very open
woodland (1.4) and the lowest in wooded grassland (1.2). Eleven species occur
in all classes and most species occur in more than one cover class but their
abundance varies greatly between classes. Forest and closed woodland classes
had an equal number of families and wooded grassland class had the lowest
number of families.
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The Simpson index of all vegetation classes differed only slightly except that
of wooded grassland (Figure 6a). The wooded grassland had the highest value
and the highest standard error. The forest class had the highest mean Fisher’s a
(Figure 6b) followed by the closed woodland class. These two classes were
significantly different from all other classes but not from each other. The open
woodland was also significantly different from the wooded grassland. The
wooded grassland had the lowest Fisher’s a.

The basal area (Figure 6c) decreased from the forest, which had the highest
value, to the wooded grassland, which had the lowest. The forest also showed
the highest variation. All cover types were significantly different from each
other. The mean stem density values for the forest, closed woodland and open
woodland were very close (Figure 6d) and there was no significant difference
between them. The very open woodland also had a high mean value although
slightly lower than the other 3. The wooded grassland is much lower than all
others. The very open woodland and the wooded grassland are each signifi-
cantly different from all others. So while many individual trees may be found in
each cover type, they vary in size with the forest having larger trees than any of
the other cover types. Details of the species occurring in each cover type and
their abundance are indicated in Appendix 3.

Discussion

Variation in species composition along the gradient

The species composition along the gradient gradually changes from species
that attain maximum abundance in areas of minimum disturbance e.g.

Figure 5. Relationship between DCA axis 1 and some of the most abundant species whose

maximum abundance occur in different areas along the gradient. The selected species also display a

variation in their distribution range.
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Cynometra alexandri and Uvariopsis congensis to species that attain maximum
abundance in areas with frequent disturbance e.g. Grewia mollis. On the other
hand, species like Terminalia velutina attain maximum abundance in the
moderately disturbed areas (Smart et al. 1985). Many species, as evidenced by
the species abundance plot (Figure 5), are wide ranging although they have a
clear optimum, which occurs at species specific locations along the gradient.
Identification of a vegetation type should, therefore, be based on species
abundance proportions rather than species incidence alone. This variation in
species tolerance range has also been observed in a Mexican dry forest
(Balvanera et al. 2002). In another study (Nangendo et al., submitted), it was
observed that the wide-ranging species often have their different development
sizes (seedlings, saplings and trees) in species specific locations along the
gradient.

Figure 6. comparison of cover class mean and standard deviation for (a) Simpson index, (b)

Fisher’s a, (c) basal area and (d) stem density. The class numbers consistently represent 1, forest; 2,

closed woodland; 3, open woodland; 4, very open woodland; and 5, wooded grassland. The letters

beside each bar indicate significance differences. Bars, for a specific variable, which have the same

letter mean that they are not significantly different (ANOVA: p = 0.05).
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Relationship between site variables and the observed gradient

Of the environmental variables recorded, fire best explained the gradient. This
is evidenced by the high correlation between DCA and fire (Table 1) and the
fact that the compositional gradient could be divided using the fire regime
(Figure 4a). Areas that had recent fires, and are probably most frequently
burnt, had species that characteristically display fire resistant traits e.g. a thick
bark, pealing off of the old bark and good sprouting ability after a fire
(Gashaw et al. 2002; Saha and Howe 2003; Vesk and Westoby 2004). The
occurrence of some species is thus influenced by their fire-tolerance level
(Cauldwell and Zieger 2000) with increasingly more of the less fire resistant
species in the Old-fire class. Here, seed dispersal (a factor not explored in this
study) may have an important role. A number of the species that occurred in
the Old-fire class were most abundant in the No-fire class. Their seeds were
probably dispersed into the Old-fire class areas e.g. by wind and, when con-
ditions became favorable, they got established. Hence we suggest that the
existent fire regime influences their low occurrence (Huston 1994).

Although water is often a limiting factor for plant survival, in humid FWS
mosaics, water distribution is not a critical controlling factor (Favier et al.
2004). Despite the variation in rainfall over Budongo Forest Reserve, with the
northern part receiving less rain than the south (Plumptre 1996), the north still
receives over 1200 mm a year (Forest Department Uganda 1997) which is
sufficient for forest maintenance. Also elephants that previously restricted
forest expansion (Laws et al. 1975) are no longer present. The species turnover
could possibly be explained by an additive effect of the environmental variables
considered in this study, the historical impact by elephants and probably other
factors that were not considered in this study e.g. seed dispersal mechanisms,
which have been shown to favor establishment of species with higher dispersal
ability in the post disturbance period (Hovestadt et al. 1999; Ohsawa et al.
2002). However, just like in other studies where FWS occur (Elliott et al. 1999;
Hovestadt et al. 1999), fire plays a major role in controlling species distribution
pattern but it does not explain all the variation (Weiher 2003). Accessibility to
the protected areas, where local people mainly utilize areas closest to them
(Acharya 1999; Obiri et al. 2002), also showed a significant relationship with
the species composition gradient.

Vegetation variation and composition as mapped using satellite image
classification

The image classification provided a good representation of the vegetation
types. Each cover class had significant indicator species and differences in
structural and species diversity existed among the cover classes (Figure 6).
Although the best differentiating factor was basal area, where each cover class
was significantly different from the others, indicator species have also been
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shown (Cousins and Lindborg 2004) to correspond well with the succession
gradient. Classification of mosaic areas using remotely sensed data could
therefore be a good start for identification of the vegetation types that exist
within them. This would require less time (Schmidt et al. 2004) as compared to
when only field surveys would have been used.

Our study has shown that although the forest significantly differed in species
diversity and vegetation structure, especially basal area, there was a systematic
decrease in variation from forest to wooded grassland (Figure 5). A major
gradient stretching from the forest to the wooded grassland is evident (Dezzeo
et al. 2004) and species composition and forest structure vary along this gra-
dient. Most of the areas sampled by Eggeling (1947) and followed up in Sheil
et al. (2000) had not had disturbance for a long time. Areas sampled in this
study, however, cover both areas with ranging times since last disturbance and
areas that are still experiencing frequent disturbance. Thus, in this study we
observe a wider range of vegetation variation.

Although subtle variations in vegetation structure may be evident in some
landscapes, the species composition variation is often more complex (Muh-
lenberg et al. 1990). In our study, the observed gradual change in species
composition along the gradient and the compositional interrelationship
between the vegetation cover classes indicate that the FWS mosaic is a single,
interacting, integrated unit.

The effect of continuing reforestation on the biodiversity of Budongo

Eggeling (1947), also followed up in Sheil (1999), identified successional stages
within the forest, with ironwood (Cynometra alexandri) at the climax end of the
spectrum and the colonizing (woodland) forest as the starting point. In their
study, the lowest woody plant diversity occurred in the ironwood forest. In our
study, although diversity is low at the ironwood end of the gradient, it is even
lower on the wooded grassland side of the gradient (plot results not shown)
indicating a drop on either end of the gradient. The highest diversity is within
the forest area and it gradually reduces until the lowest level, which occurs in
the wooded grassland. The colonizing forest, identified by Eggeling (1947) as
the starting point of the succession, occurs somewhere towards the middle of
the current gradient. The current study has, therefore, extended the succession
gradient to further into the wooded grassland and yet still conforms with the
Intermediate Disturbance Hypothesis (IDH) (Connell 1978).

Another DCA run, after combining a resampled set of Eggeling’s data with
data used in this study, revealed more of the similarities between the two
gradients. It, additionally, emphasized the existence of more than one succes-
sion path in the forest (Eggeling 1947; Sheil et al. 2000) and the variation
within the forest (Plumptre 1996). To incorporate Eggeling’s data, resampling
from the original data set was carried out. Having known the plot size and the
number of individuals collected from each of his plots, the number of
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individuals expected to occur in a 500 m2 plot was calculated. The calculated
number of individuals was then randomly sampled from the original individ-
uals of the respective plot. The abundance of each species in each plot was then
raised to that which would occur in an 1000 m2 plot. After crosschecking the
species names for possible changes in naming, the data were combined with
the rest of the tree data used in this study and a DCA was carried out. All
Eggeling’s plots, considering the first axis, occurred at one end of the gradient
but in line with the rest of the plots (Figure 7). Eggeling’s observation of
compositional convergence (Eggeling 1947) is still evident in his plots (see
dotted lines in Figure 7).

Plumptre (1996) identified a north–south compositional gradient. In our
study, the variation along the second axis of Figure 7 is an indicator of this
gradient. Eggelling’s plots collected from the southern part of the forest occur
separate from most of our plots, which were collected from the northern part
of the forest.

Succession always starts with very few species, then progresses awhile along
one line with more species coming in as conditions become more favorable
(Huston 1994). In our study, few species were observed in the wooded
grassland end of the gradient and species numbers increased as one moved
towards the forest (Figure 3b). Although the forest side of the gradient had
more species, other species occur away from the forest environment. The
diversity of an area is influenced by the type, frequency and intensity of the
disturbance (Trapnell 1959; Petraitis et al. 1989). Hence, if the whole suc-
cession gradient occurs in an area, there would be more species (Connell
1978; Huston 1994) than if one or a few stages of the succession gradient
were conserved. So while the areas that have high species numbers e.g. forest

Figure 7. DCA graph obtained after combining a resampled set of Eggeling’s data to the data

used in this paper. Axis 1 had an eigenvalue of 0.38 and explained 9.8% of the variation. The

second axis had an eigenvalue of 0.19 and explained 4.9%.
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ought to be preserved (Sheil and Burslem 2003), the woodland areas should
not all be allowed to become forest since that would mean loosing the
woodland dependant species. And the highest number of species can only be
conserved when complementary areas are included in the conservation plan
(Howard et al. 1998). The maintenance of the high diversity of Budongo,
being an isolated forest with no immediate source of additional forest species,
may be more attributed to the existence of all stages of the succession gra-
dient (Richardson-Kageler 2004; Shea et al. 2004) than acquisition of more
forest species from elsewhere, which, additionally, often takes a long time
(Chapman et al. 1997). Hence, if reforestation of Budongo Forest Reserve
would continue to the extent that the woodland areas would be lost, the
biodiversity of the reserve would probably decrease. For purposes of con-
serving woody plants in a dynamic landscape, it is thus important that each
vegetation type represented is included and maintained within the conserva-
tion area (Bengtsson et al. 2003). In the area under study, fire disturbance is a
requirement for species coexistence (Shea et al. 2004).

In areas where fire may be applied, the vegetation type and its develop-
ment stage may affect the potential for ignition and spread of the fire
(Everett et al. 2000). Although no evidence exists of fires having destroyed
tropical rain forests in Uganda, it has been observed elsewhere that tropical
forests can burn (Cochrane and Schuize 1999; Cochrane and Laurance 2002;
Laurence 2003). This, however, mainly occurs in the presence of very dry
conditions, in fragmented forest landscapes and when fire is carelessly
applied in or adjacent to logged over areas. Fire also remains a highly de-
bated conservation management tool (Mentis and Bailey 1990; Trollope et al.
1995; van Wilgen et al. 1998). It is therefore important that fire be used
cautiously and, probably learning and using burning methods that have been
used in the past (Goma et al. 2001) will be a prerequisite. In this respect,
conservationists need to focus more attention on the current vegetation
management practices of local people surrounding conservation areas (Leone
and Lovreglio 2004) since they have been noted to use fire destructively
(Condit et al. 1998; Wheater 1971).

In Africa FWS mosaics are prevalent in areas surrounding the Congo basin
forests, including Uganda. These areas have been defined as transitional zones
between the moist tropical forest and the drier savanna landscape typical of
much of Africa. On the northern side, the transition occurs at about 8� N with
the exception of Togo and Benin and part of Ivory Coast (Gautier and Spi-
chiger 2004). Many FWS mosaics occur in Uganda because of its location in a
zone of overlap between the ecological communities characteristic of the dry
East African savannas and the West African rainforests (Howard 1991). The
observations made in this study and their management implications are,
therefore, relevant to many areas in Africa and in much of the tropical world
where such landscapes occur.
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Conclusions and recommendations

• Species composition in the area gradually changes from the forest to
savannah.

• Although many of the species occurred in more than one vegetation cover
class, each class had species that can be used to identify it. These are the
classes where such species had a significantly higher relative abundance as
compared to other classes.

• The gradient could be divided into sections using vegetation cover classes
and the fire indicator. These cover classes were compositionally separable
and vegetation structure significantly differed between the classes.

• Among the environmental variables, fire best explained the compositional
variation along the gradient.
Areas with such a dynamic FWS mosaic need a purposeful management that

takes into account the relationship between the observed vegetation pattern
and how this has been generated over time (Alados et al. 2004). Since each
vegetation cover class was compositionally separable from the others, a portion
of each of these classes needs to be conserved. An area where all cover classes
occur would be preferable since many species tend to occur in more than one
cover class and another study (Nangendo 2005) showed that the juveniles and
adults of some species do not occur in the same vegetation patches.

A well balanced management, including a controlled fire management sys-
tem that will prevent forest from colonizing the whole area yet allowing the
existence of varying disturbance regimes is a prerequisite for maintaining
species diversity (Crow and Perera 2004).
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Appendix 1. The Indicator Species Analysis output based on fire indicator classes.

Species names RA-0 RF-0 RA-1 RF-1 RA-2 RF-2 IV p Fire class

Terminalia velutina 39 66 52 90 9 47 46.7 0.001 1

Grewia mollis 14 47 37 80 49 87 42.4 0.001 2

Combretum collinum 23 37 39 56 38 49 21.7 0.046

Uvariopsis congensis 100 26 0 1 0 0 25.7 0.001 0

Annona senegalensis 18 33 35 59 47 55 25.7 0.005 2
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Appendix 1. Continued.

Species names RA-0 RF-0 RA-1 RF-1 RA-2 RF-2 IV p Fire class

Albizia grandibracteata 64 41 31 22 5 6 26.2 0.001 0

Stereospermum kunthianum 22 28 44 50 34 47 21.9 0.003 1

Combretum molle 1 5 31 24 68 49 33.7 0.001 2

Lonchocarpus laxiflorus 10 12 19 22 71 45 31.7 0.001 2

Vitex doniana 38 33 36 36 26 25 12.8 0.585

Funtumia elastica 94 31 6 3 0 0 28.9 0.001 0

Lanea barteri 27 25 41 32 32 29 13.1 0.174

Celtis wightii 100 24 0 0 0 0 24.2 0.001 0

Acacia hockii 22 19 46 29 32 23 13.4 0.033

Piliostgma thonningii 25 18 53 31 23 15 16.2 0.004 1

Caloncoba schweinfurthii 86 23 14 6 0 0 20.2 0.001 0

Holoptelea grandis 99 22 1 1 0 0 21.6 0.001 0

Maesopsis eminii 62 21 38 12 0 0 12.8 0.003 0

Diospyros abyssinica 100 10 0 0 0 0 9.6 0.001 0

Ficus sur 43 15 48 15 9 3 7.1 0.245

Grewia bicolor 8 5 23 9 69 18 12.8 0.001 2

Khaya anthotheca 86 15 14 2 0 0 12.6 0.001 0

Dombeya mukole 79 8 17 3 5 1 6.4 0.013 0

Bridelia micrantha 87 12 9 1 4 1 10.7 0.001 0

Celtis durandii 86 12 14 2 0 0 9.9 0.003 0

Combretum binderanum 2 0 37 6 61 9 5.6 0.012 2

Margaritaria discoidea 71 11 29 2 0 0 7.6 0.004 0

Phyllanthus discoideus 100 10 0 0 0 0 9.6 0.001 0

Albizia zygia 56 2 20 2 24 3 1.3 0.829

Celtis zenkeri 100 10 0 0 0 0 10.4 0.001 0

Pterygota mildbreadii 70 5 30 1 0 0 3.8 0.059

Hymenocardia acida 11 3 27 5 62 9 5.7 0.008 2

Olea welwitschii 95 9 5 1 0 0 8.8 0.001 0

Oncoba spinosa 37 5 14 1 49 6 2.8 0.326

Tapura fisheri 80 9 20 2 0 0 7.1 0.009 0

Securinega virosa 0 0 38 5 62 10 6.4 0.004 2

Dichrostachys cinerea 73 5 27 1 0 0 3.9 0.064

Alstonia boonei 100 9 0 0 0 0 8.8 0.001 0

Cynometra alexandri 100 5 0 0 0 0 5 0.007 0

Ficus exasperata 37 3 63 3 0 0 2.2 0.272

Combretum gueinzii 0 0 73 1 27 1 0.5 0.749

Sapium ellipticum 81 2 19 1 0 0 1.2 0.403

Carpololobia alba 0 0 21 3 79 6 4.5 0.006 2

Dombeya rotundifolia 8 2 25 5 67 8 5.4 0.012 2

Trichilia prieuriana 100 5 0 0 0 0 5.4 0.007 0

It indicates the concentration of each species in each class (Relative abundance, RA), the faith-

fulness of occurrence of the species in that class (Relative frequency, RF), the highest species

indicator value across the classes (IV) the statistical significance of the indicator value (p) and the

class in which a particular species had the highest indicator value (Fire class). For species that were

not significant indicators for any class, fire class was left blank. RA is expressed as a proportion of a

particular species in a particular class relative to its abundance in other classes. RF is expressed as

the percentage of sample units in a class that contain that species.

p is significant at 0.01.

0, No fire; 1, old fire; and 2, recent fire.
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Appendix 2. The Indicator Species Analysis output based on vegetation cover classes.

Species RA-1 RF-1 RA-2 RF-2 RA-3 RF-3 RA-4 RF-4 RA-5 RF-5 IV P Cover

cord

Terminalia

velutina

12 30 44 97 31 85 8 57 5 44 42.8 0.001 2

Grewia mollis 2 16 16 70 32 88 48 99 1 11 47 0.001 4

Combretum

collinum

11 18 20 52 38 64 22 43 10 22 24.3 0.042

Uvariopsis

congensis

100 54 0 0 0 0 0 0 0 0 54.4 0.001 1

Annona

senegalensis

6 14 23 52 30 58 42 64 0 0 26.9 0.02

Albizia

grandibracteata

28 26 55 60 14 15 3 3 0 0 32.9 0.002 2

Stereospermum

kunthianum

7 11 26 51 22 45 17 39 29 67 19.2 0.063

Combretum

molle

0 2 2 6 15 23 74 66 8 22 48.4 0.001 4

Lonchocarpus

laxiflorus

0 0 2 10 14 36 26 47 58 56 32 0.001 5

Vitex doniana 5 11 33 51 23 36 16 24 23 22 16.8 0.095

Funtumia

elastica

89 55 11 11 0 0 0 0 0 0 49.4 0.001 1

Lanea barteri 2 3 23 30 35 40 34 43 6 11 14.7 0.095

Celtis wightii 100 50 0 1 0 0 0 0 0 0 49.4 0.001 1

Acacia hockii 7 10 16 22 31 37 17 21 29 11 11.6 0.15

Piliostgma

thonningii

5 8 18 24 22 31 10 16 45 44 19.8 0.024

Caloncoba

schweinfurthii

74 38 24 13 2 2 0 0 0 0 27.9 0.005 1

Holoptelea

grandis

94 42 6 3 0 0 0 0 0 0 39.8 0.001 1

Maesopsis

eminii

45 23 55 28 0 0 0 0 0 0 15.7 0.033

Diospyros

abyssinica

96 18 3 1 1 1 0 0 0 0 17.7 0.005 1

Ficus sur 18 10 43 20 31 14 8 4 0 0 8.8 0.133

Grewia bicolor 0 0 3 3 11 13 20 20 66 56 36.9 0.001 5

Khaya

anthotheca

71 20 23 10 6 1 0 0 0 0 14.2 0.03

Dombeya

mukole

82 14 5 2 11 4 3 1 0 0 11.1 0.04

Bridelia

micrantha

26 7 70 16 2 1 3 1 0 0 11.3 0.046

Celtis durandii 93 23 7 3 0 0 0 0 0 0 21.5 0.005 1

Combretum

binderanum

0 0 1 1 9 5 11 10 78 22 17.4 0.005 5

Margaritaria

discoidea

61 14 39 9 0 0 0 0 0 0 8.3 0.078

Phyllanthus

discoideus

97 18 3 1 0 0 0 0 0 0 17.8 0.011 1

Albizia zygia 67 3 12 2 7 1 15 4 0 0 2.1 0.469
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Appendix 2. Continued.

Species RA-1 RF-1 RA-2 RF-2 RA-3 RF-3 RA-4 RF-4 RA-5 RF-5 IV P Cover

cord

Celtis zenkeri 100 22 0 0 0 0 0 0 0 0 21.6 0.006 1

Pterygota

mildbreadii

100 13 0 0 0 0 0 0 0 0 12.8 0.025

Hymenocardia

acida

0 0 3 2 20 9 27 7 50 22 11.2 0.045

Olea

welwitschii

92 17 8 3 0 0 0 0 0 0 15.4 0.016

Oncoba

spinosa

48 9 6 1 12 3 33 6 0 0 4.2 0.166

Tapura fisheri 90 18 10 2 0 0 0 0 0 0 16.6 0.014 1

Securinega

virosa

0 0 8 1 21 3 71 14 0 0 10.1 0.03

Dichrostachys

cinerea

63 6 18 4 12 1 8 1 0 0 4 0.138

Alstonia

boonei

86 14 14 3 0 0 0 0 0 0 12.4 0.033

Cynometra

alexandri

100 10 0 0 0 0 0 0 0 0 10.4 0.022

Ficus

exasperata

6 1 46 5 48 4 0 0 0 0 2.2 0.454

Combretum

gueinzii

0 0 0 0 0 0 0 0 100 22 22.2 0.001 5

Sapium

ellipticum

82 2 18 1 0 0 0 0 0 0 2 0.174

Carpololobia

alba

0 0 32 1 38 4 30 4 0 0 1.4 0.607

Dombeya

rotundifolia

0 0 8 2 17 4 75 13 0 0 9.7 0.04

Trichilia

prieuriana

100 11 0 0 0 0 0 0 0 0 11.2 0.03

It indicates the concentration of each species in each class (Relative abundance, RA), the faithfulness of

occurrence of the species in that class (Relative frequency, RF), the highest species indicator value across the

classes (IV) the statistical significance of the indicator value (p) and the class in which a particular species had the

highest indicator value (Cover cord). For species that were not significant indicators for any class, cover cord was

left blank. RA is expressed as a proportion of a particular species in a particular class relative to its abundance in

other classes. RF is expressed as the percentage of sample units in a class that contain that species.

p is significant at 0.01.

1, Forest; 2, closed woodland; 3, open woodland; 4, very open woodland; and 5, wooded grassland.

Appendix 3. The 121woody species identified in the field, their abundance per class.

Number of individuals

Family Species Fo cw Ow Vow Wg

Mimosaceae Acacia hockii De Wild. 20 55 97 25 7

Mimosaceae Acacia seyal Delile . . . 1 .
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Appendix 3. Continued.

Number of individuals

Mimosaceae Acacia sieberiana Dc. Var.

woodii (Burtt Davy)

Keay & Brenan

1 6 . 3 .

Mimosaceae Acacia spp. 2 . . . .

Euphorbiaceae Acalypha neptunica Müll.

Arg. Var.

9 . . . .

Mimosaceae Albizia coriaria Oliver 9 8 2 . .

Mimosaceae Albizia grandibracteata Taub. 120 257 57 7 .

Mimosaceae Albizia spp. . . 1 . .

Mimosaceae Albizia zygia (DC.) Macbr. 33 5 3 3 .

Apocynaceae Alstonia boonei de Wild 24 5 . . .

Sapotaceae Aningeria altissima (A. Chev.)

Aubr. & Pellegr.

15 2 1 2 .

Annonaceae Annona senegalensis Pers. 35 157 194 129 1

Balemetea gramofolia 1 . . . .

Rubiaceae Belonophora glomerata 2 1 . . .

Sapindaceae Blighia unijugata Baker 2 6 . . .

Euphorbiaceae Bridelia micrantha (Hochst.) Baill. 15 49 1 1 .

Euphorbiaceae Bridelia scleroneuroides Pax. . 2 5 2 .

Elacourtiacea Caloncoba schweinfurthii Glig. 107 42 3 . .

Polygalaceae Carpololobia alba G. Don . 9 12 4 .

Caesalpinioideae Cassia siamea Lam. 2 13 . . .

Caesalpinioideae Cassia spp. . 1 . . .

Ulmaceae Celtis durandii Engl. 59 6 . . .

Ulmaceae Celtis mildbraedii Engl. 7 . . . .

Ulmaceae Celtis wightii Planch. 204 1 . . .

Ulmaceae Celtis zenkeri Engl. 43 . . . .

Moraceae Chlorophora excelsa (Welw.) Benth . 3 . . .

Sapotaceae Chrysophyllum albidum G. Don 6 . . . .

Rutaceae Citropsis articulata (Wild. Ex Spreng)

Swingle & M. Kellerm

1 . . . .

Annonaceae Cleistopholis patens (Beth.) Engl. & Diels 1 . . . .

Closophila magida 1 . . . .

Rubiaceae Coffea canephora Pierre ex Froechner. 5 . . . .

Rubiaceae Coffea euginiodes 5 . . . .

Sterculiaceae Cola gigantea A. Chev. 13 . . . .

Combretaceae Combretum binderanum Kotschy . 3 16 14 17

Combretaceae Combretum collinum Fresen. 107 240 431 137 12

Combretaceae Combretum gueinzii Sond. . . 2 . 21

Combretaceae Combretum molle R. Br. Ex G. Don 4 18 92 243 6

Boraginaceae Cordia millenii Baker 7 7 . . .

Aralliaceae Cussonia arborea Hochst. Ex A. Rich. . 1 4 12 .

Caesalpiniaceae Cynometra alexandri CH Wright 29 . . . .

Mimosaceae Dichrostachys cinerea (L.) Wright & Arn 19 8 3 1 .

Ebenaceae Diospyros abyssinica (Hiern) F. White 90 3 1 . .

Sterculiaceae Dombeya mukole Sprague 56 3 6 1 .

Sterculiaceae Dombeya rotundifolia (Hochst.) Planch. 2 3 6 12 .

Mimosaceae Entada abyssinica Steud. Ex A. Rich . . 1 . .

Meliaceae Entandrophragma angolense (Welw.) C. DC. 3 . . . .
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Appendix 3. Continued.

Number of individuals

Meliaceae Entandrophragma cylindricum

(Sprague) Sprague

1 . . . .

Papilionaceae Erythrina abyssinica Lam. Ex DC 1 4 1 3 .

Leguminosae Erythrophleum suaveolens

(Guill. & Perr.)Brenan

8 . . . .

Rutaceae Fagaropsis angolensis (Engl.)

HM. Gardner

5 1 . . .

Moraceae Ficus capensis Thunb 1 1 . . .

Moraceae Ficus casuarina . 1 . . .

Moraceae Ficus exasperata Vahl 1 10 8 . 5

Moraceae Ficus mucuso Welw ex Ficalho 1 5 1 . .

Moraceae Ficus polita Vahl 9 5 1 . .

Moraceae Ficus saussureana DC. . 1 . . .

Moraceae Ficus spp. 1 . . . .

Moraceae Ficus sansibarica Warb. 1 . . . .

Moraceae Ficus sur Forssk 17 41 26 3 .

Apocynaceae Funtumia elastica (Preuss) Stapf 227 32 . . .

Rubiaceae Gardenia Jovis-tonantis (Welw.) Hiern. . 1 1 1 .

Tiliaceae Grewia bicolor Juss. . 10 27 26 17

Tiliaceae Grewia mollis Juss. 58 424 761 531 6

Simaroubaceae Harrisonia abyssinica Oliv. . 1 . . .

Ulmaceae Holoptelea grandis (Hutch.) Mildbr. 99 10 . . .

Euphorbiaceae Hymenocardia acida Tul. 3 3 22 15 3

Meliaceae Khaya anthotheca (Welw.) C. DC. 50 16 4 . .

Meliaceae Khaya grandifolia C. DC. 1 . . . .

Bignoniaceae Kigeria africana (Lam.) Benth . . 5 1 .

Anacardiaceae Lanea barteri (Oliv.) Engl. 5 78 107 48 2

Anacardiaceae Lannea welwitschii (Hiern.) Engl. . 3 . 1 .

Rhamnaceae Lasiodiscus mildbraedii Engl. 1 . . . .

Sapindaceae Lepisanthes senegalensis (Juss. Ex Poir.) 6 5 . . .

Papilionaceae Lonchocarpus laxiflorus Guill. & Perr. . 20 116 108 34

Capparidaceae Maerua duchensii 12 . . . .

Rhamnaceae Maesopsis eminii Engl. 47 61 . . .

Meliaceae Mahogany spp. 8 . . . .

Euphorbiaceae Margaritaria discoidea (Baill.) Webster 29 21 . . .

Rignoniaceae Markhamia platycalyx (Baker) Sprague 2 1 . . .

Celastraceae Maytenus undata (Thunb.) Blakelock . 1 4 7 4

Papilionaceae Mildbraediodendron excelsum (Harms) 3 . . . .

Moraceae Milicia excelsa (Welw.) CC Berg 2 2 . . .

Rubiaceae Mitragyna stipulosa (DC.) O. Ktze 1 . . . .

Moraceae Morus lactea (Sim) Mildbr. . 1 . . .

Moraceae Myrianthus holstii Engl. 4 . . . .

Oleaceae Olea welwitschii (Knobl.) Gilg & Schellenb. 36 4 . . .

Flacourtiaceae Oncoba spinosa Forsk. 24 3 5 8 .

Palmae Phoenix reclinata Jacq. 12 . . . .

Euphorbiaceae Phyllanthus discoideus Muell. 46 2 . . .

Caesalpiniaceae Piliostgma thonningii (Schum.) 21 66 75 18 12

Verbenaceae Premna angolensis Guerke 18 2 . . .

Proteaceae Protea madiensis Oliv. . . . 9 .

Anacardiaceae Pseudospondias microcarpa (A. Rich.) Engl. 4 2 . . .
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Total species 95 77 48 39 18
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