225 research outputs found

    High circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma

    Get PDF
    Activin A (ActA)/follistatin (FST) signaling has been shown to be deregulated in different tumor types including lung adenocarcinoma (LADC). Here, we report that serum ActA protein levels are significantly elevated in LADC patients (n=64) as compared to controls (n=46, p=0.015). ActA levels also correlated with more advanced disease stage (p<0.0001) and T (p=0.0035) and N (p=0.0002) factors. M1 patients had significantly higher ActA levels than M0 patients (p<0.001). High serum ActA level was associated with poor overall survival (p<0.0001) and was confirmed as an independent prognostic factor (p=0.004). Serum FST levels were increased only in female LADC patients (vs. female controls, p=0.031). Two out of five LADC cell lines secreted biologically active ActA, while FST was produced in all of them. Transcripts of both type I and II ActA receptors were detected in all five LADC cell lines. In conclusion, our study does not only suggest that measuring blood ActA levels in LADC patients might improve the prediction of prognosis, but also indicates that this parameter might be a novel non-invasive biomarker for identifying LADC patients with organ metastases

    Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants.

    Get PDF
    The origin of SARS-CoV-2 variants of concern remains unclear. Here, we test whether intra-host virus evolution during persistent infections could be a contributing factor by characterizing the long-term SARS-CoV-2 infection dynamics in an immunosuppressed kidney transplant recipient. Applying RT-qPCR and next-generation sequencing (NGS) of sequential respiratory specimens, we identify several mutations in the viral genome late in infection. We demonstrate that a late viral isolate exhibiting genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil, can escape neutralization by COVID-19 antisera. Moreover, infection of susceptible mice with this patient's escape variant elicits protective immunity against re-infection with either the parental virus and the escape variant, as well as high neutralization titers against the alpha and beta SARS-CoV-2 variants, B.1.1.7 and B.1.351, demonstrating a considerable immune control against such variants of concern. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results suggest that immunocompromised patients could be a source for the emergence of potentially harmful SARS-CoV-2 variants

    Recent advances in Pichia pastoris as host for heterologous expression system for lipases : a review

    Get PDF
    The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the new success in synthetic biology, with traditional molecular genetic techniques and bioprocess engineering in the last 5 years in the cell factory Pichia pastoris, the most promising host system for heterologous lipase production, is presented. The goals get on heterologous Candida antarctica, Rhizopus oryzae, and Candida rugosa lipases, three of the most common lipases used in biocatalysis, are showed. Finally, new cell factories producing heterologous lipases are presented

    In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility

    Get PDF
    There is an increased interest in secondary plant metabolites, such as polyphenols and carotenoids, due to their proposed health benefits. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly, and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed and employed to predict their release from the food matrix, bioaccessibility, and assess changes in their profiles prior to absorption. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine, and, occasionally, the large intestine. A plethora of models have been reported, the choice mostly driven by the type of phytochemical studied, whether the purpose is screening or studying under close physiological conditions, and the availability of the model systems. Unfortunately, the diversity of model conditions has hampered the ability to compare results across different studies. For example, there is substantial variability in the time of digestion, concentrations of salts, enzymes, and bile acids used, pH, the inclusion of various digestion stages; and whether chosen conditions are static (with fixed concentrations of enzymes, bile salts, digesta, and so on) or dynamic (varying concentrations of these constituents). This review presents an overview of models that have been employed to study the digestion of both lipophilic and hydrophilic phytochemicals, comparing digestive conditions in vitro and in vivo and, finally, suggests a set of parameters for static models that resemble physiological conditions

    Regulation of Coronary Blood Flow

    Get PDF
    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Literary studies and the academy

    Get PDF
    In 1885 the University of Oxford invited applications for the newly created Merton Professorship of English Language and Literature. The holder of the chair was, according to the statutes, to ‘lecture and give instruction on the broad history and criticism of English Language and Literature, and on the works of approved English authors’. This was not in itself a particularly innovatory move, as the study of English vernacular literature had played some part in higher education in Britain for over a century. Oxford University had put English as a subject into its pass degree in 1873, had been participating since 1878 in extension teaching, of which literary study formed a significant part, and had since 1881 been setting special examinations in the subject for its non-graduating women students. What was new was the fact that this ancient university appeared to be on the verge of granting the solid academic legitimacy of an established chair to an institutionally marginal and often contentious intellectual pursuit, acknowledging the study of literary texts in English to be a fit subject not just for women and the educationally disadvantaged but also for university men
    • 

    corecore