87 research outputs found

    Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO_2)Te^(6+)O_6, the first natural uranyl tellurate

    Get PDF
    Markcooperite, Pb_2(UO_2)Te^(6+)O_6, is a new tellurate from Otto Mountain near Baker, California, named in honor of Mark A. Cooper of the University of Manitoba for his contributions to mineralogy. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins. Markcooperite is directly associated with bromian chlorargyrite, iodargyrite, khinite-4O, wulfenite, and four other new tellurates: housleyite, thorneite, ottoite, and timroseite. Various other secondary minerals occur in the veins, including two other new secondary tellurium minerals: paratimroseite and telluroperite. Markcooperite is monoclinic, space group P2_1/c, a = 5.722(2), b = 7.7478(2), c = 7.889(2) Å, β = 90.833(5)°, V = 349.7(2) Å^3, and Z = 2. It occurs as pseudotetragonal prisms to 0.2 mm with the forms {100} and {011} and as botryoidal intergrowths to 0.3 mm in diameter; no twinning was observed. Markcooperite is orange and transparent, with a light orange streak and adamantine luster, and is non-fluorescent. Mohs hardness is estimated at 3. The mineral is brittle, with an irregular fracture and perfect {100} cleavage. The calculated density is 8.496 g/cm3 based on the empirical formula. Markcooperite is biaxial (+), with indices of refraction α= 2.11, β = 2.12, γ= 2.29 calculated using the Gladstone-Dale relationship, measured α-β birefringence of 0.01 and measured 2V of 30(5)°. The optical orientation is X = c, Y = b, Z = a. The mineral is slightly pleochroic in shades of orange, with absorption: X > Y = Z. No dispersion was observed. Electron microprobe analysis provided PbO 50.07, TeO_3 22.64, UO_3 25.01, Cl 0.03, O≡Cl –0.01, total 97.74 wt%; the empirical formula (based on O+Cl = 8) is Pb_(2.05)U_(0.80)Te^(6+)_(1.18)O_(7.99)Cl_(0.01). The strongest powder X-ray diffraction lines are [d_(obs) in Å (hkl) I]: 3.235 (120, 102, 1[overbar]02) 100, 2.873 (200) 40, 2.985 (1[overbar]21, 112, 121) 37, 2.774 (022) 30, 3.501 (021, 012) 29, 2.220 (221, 2[overbar]21, 212) 23, 1.990 (222, 2[overbar]22) 21, and 1.715 (320) 22. The crystal structure (R_1 = 0.052) is based on sheets of corner-sharing uranyl square bipyramids and tellurate octahedra, with Pb atoms between the sheets. Markcooperite is the first compound to show Te^(6+) substitution for U^(6+) within the same crystallographic site. Markcooperite is structurally related to synthetic Pb(UO_2)O_2

    Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb_2Cu_5^(2+)(Te^(6+)O_6)_2(OH)_2, and paratimroseite, Pb_2Cu_4^(2+)(Te^(6+)O_6)_2(H_2O)_2, two new tellurates with Te-Cu polyhedral sheets

    Get PDF
    Timroseite, Pb_2Cu_5^(2+)(Te^(6+)O_6)_2(OH)_2, and paratimroseite, Pb_2Cu_4^(2+)(Te^(6+)O_6)_2(H_2O)_2, are two new tellurates from Otto Mountain near Baker, California. Timroseite is named in honor of Timothy (Tim) P. Rose and paratimroseite is named for its relationship to timroseite. Both new minerals occur on fracture surfaces and in small vugs in brecciated quartz veins. Timroseite is directly associated with acanthite, cerussite, bromine-rich chlorargyrite, chrysocolla, gold, housleyite, iodargyrite, khinite-4O, markcooperite, ottoite, paratimroseite, thorneite, vauquelinite, and wulfenite. Paratimroseite is directly associated with calcite, cerussite, housleyite, khinite-4O, markcooperite, and timroseite. Timroseite is orthorhombic, space group P2_1nm, a = 5.2000(2), b = 9.6225(4), c = 11.5340(5) Å, V = 577.13(4) Å^3, and Z = 2. Paratimroseite is orthorhombic, space group P2_12_12_1, a = 5.1943(4), b = 9.6198(10), c = 11.6746(11) Å, V = 583.35(9) Å^3, and Z = 2. Timroseite commonly occurs as olive to lime green, irregular, rounded masses and rarely in crystals as dark olive green, equant rhombs, and diamond-shaped plates in subparallel sheaf-like aggregates. It has a very pale yellowish green streak, dull to adamantine luster, a hardness of about 2 1/2 (Mohs), brittle tenacity, irregular fracture, no cleavage, and a calculated density of 6.981 g/cm^3. Paratimroseite occurs as vibrant "neon" green blades typically intergrown in irregular clusters and as lime green botryoids. It has a very pale green streak, dull to adamantine luster, a hardness of about 3 (Mohs), brittle tenacity, irregular fracture, good {001} cleavage, and a calculated density of 6.556 g/cm^3. Timroseite is biaxial (+) with a large 2V, indices of refraction > 2, orientation X = b, Y = a, Z = c and pleochroism: X = greenish yellow, Y = yellowish green, Z = dark green (Z > Y > X). Paratimroseite is biaxial (–) with a large 2V, indices of refraction > 2, orientation X = c, Y = b, Z = a and pleochroism: X = light green, Y = green, Z = green (Y = Z >> X). Electron microprobe analysis of timroseite provided PbO 35.85, CuO 29.57, TeO_3 27.75, Cl 0.04, H_2O 1.38 (structure), O≡Cl –0.01, total 94.58 wt%; the empirical formula (based on O+Cl = 14) is Pb_(2.07) Cu^(2+)_(4.80)Te^(6+)_(2.04)O_(12)(OH)_(1.98)Cl_(0.02). Electron microprobe analysis of paratimroseite provided PbO 36.11, CuO 26.27, TeO_3 29.80, Cl 0.04, H_2O 3.01 (structure), O≡Cl –0.01, total 95.22 wt%; the empirical formula (based on O+Cl = 14) is Pb_(1.94)Cu^(2+)_(3.96)Te^(6+)_(2.03)O_(12)(H_2O)_(1.99)Cl_(0.01). The strongest powder X-ray diffraction lines for timroseite are [d_(obs) in Å (hkl) I]: 3.693 (022) 43, 3.578 (112) 44, 3.008 (023) 84, 2.950 (113) 88, 2.732 (130) 100, 1.785 (multiple) 33, 1.475 (332) 36; and for paratimroseite 4.771 (101) 76, 4.463 (021) 32, 3.544 (120) 44, 3.029 (023,122) 100, 2.973 (113) 48, 2.665 (131) 41, 2.469 (114) 40, 2.246 (221) 34. The crystal structures of timroseite (R_1 = 0.029) and paratimroseite (R_1 = 0.039) are very closely related. The structures are based upon edge- and corner-sharing sheets of Te and Cu polyhedra parallel to (001) and the sheets in both structures are identical in topology and virtually identical in geometry. In timroseite, the sheets are joined to one another along c by sharing the apical O atoms of Cu octahedra, as well as by sharing edges and corners with an additional CuO_5 square pyramid located between the sheets. The sheets in paratimroseite are joined only via Pb-O and H bonds

    Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb_3Te^(4+)O_4Cl_2, the Te analog of perite and nadorite

    Get PDF
    Telluroperite, Pb_3Te^(4+)O_4Cl_2, is a new tellurite from Otto Mountain near Baker, California. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins in direct association with acanthite, bromine-rich chlorargyrite, caledonite, cerussite, galena, goethite, and linarite. Various other secondary minerals occur in the veins, including six new tellurates, housleyite, markcooperite, paratimroseite, ottoite, thorneite, and timroseite. Telluroperite is orthorhombic, space group Bmmb, a = 5.5649(6), b = 5.5565(6), c = 12.4750(14) Å, V = 386.37(7) Å^3, and Z = 2. The new mineral occurs as rounded square tablets and flakes up to 0.25 mm on edge and 0.02 mm thick. The form {001} is prominent and is probably bounded by {100}, {010}, and {110}. It is bluish-green and transparent, with a pale bluish-green streak and adamantine luster. The mineral is non-fluorescent. Mohs hardness is estimated to be between 2 and 3. The mineral is brittle, with a curved fracture and perfect {001} cleavage. The calculated density based on the empirical formula is 7.323 g/cm^3. Telluroperite is biaxial (–), with very small 2V (~10°). The average index of refraction is 2.219 calculated by the Gladstone-Dale relationship. The optical orientation is X = c and the mineral exhibits moderate bluish-green pleochrosim; absorption: X < Y = Z. Electron microprobe analysis provided PbO 72.70, TeO_2 19.26, Cl 9.44, O≡Cl –2.31, total 99.27 wt%. The empirical formula (based on O+Cl = 6) is Pb_(2.79)Te_(1.03)^(4+)O_(3.72)Cl_(2.28). The six strongest powder X-ray diffraction lines are [d_(obs) in Å (hkl) I]: 3.750 (111) 58, 2.857 (113) 100, 2.781 (020, 200) 43, 2.075 (024, 204) 31, 1.966 (220) 30, and 1.620 (117, 313, 133) 52. The crystal structure (R_1 = 0.056) is based on the Sillén X_1 structure-type and consists of a three-dimensional structural topology with lead-oxide halide polyhedra linked to tellurium/lead oxide groups. The mineral is named for the relationship to perite and the dominance of Te (with Pb) in the Bi site of perite

    Crystal structure and revised chemical formula for burckhardtite, Pb_2(Fe^(3+)Te^(6+))[AlSi_3O_8]O_6: a double-sheet silicate with intercalated phyllotellurate layers

    Get PDF
    The crystal structure of burckhardite from the type locality, Moctezuma, Sonora, Mexico, has been refined to R_1 = 0.0362 and wR_2 = 0.0370 for 215 reflections with I > 2σ(I). Burckhardtite is trigonal, space group P3lm, with the unit-cell parameters ɑ = 5.2566(5) Å, c = 13.0221(10) Å, V = 311.62(5) Å3 and Z = 1 for the ideal formula unit Pb_2(Fe^(3+)Te^(6+))[AlSi_3O_8]O_6. There is no long-range order of (Fe^(3+), Te^(6+)) or (Al^(3+), Si^(4+)). New microprobe data were used to estimate site scattering factors, and Raman spectroscopic data showed no evidence of O–H stretching bands. Burckhardtite is not closely related to the micas, as supposed previously, but is a double-sheet silicate in which the aluminosilicate anion resembles that of minerals such as cymrite and kampfite. The [(Fe^(3+)Te^(6+))O_6]^(3−) part of the structure is not bonded directly to the aluminosilicate layer, but forms a discrete anionic phyllotellurate layer that alternates with the [AlSi_3O_8]^− double sheets. Similar phyllotellurate layers are known from several synthetic phases. In burckhardtite, Pb^(2+) cations intercalate between phyllosilicate and phyllotellurate layers, forming a Pb_2[FeTeO_6] module that is topologically similar to a slab of the structure of rosiaite, Pb[Sb_2O_6]. The crystal symmetry, structure, classification as a double-sheet silicate and chemical formula, including the determination of the 6+ valence of Te and absence of essential H_2O, are all new findings for the mineral

    The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA

    Get PDF
    An unusually diverse array of 25 secondary Te oxysalt minerals has been documented from Otto Mountain, California, and 18 of these from the Bird Nest drift sublocality. A paragenetic sequence for these minerals is proposed, using observed overgrowth relationships plus spatial association data and data from other localities. Apart from Te and O, the components Pb, Cu and H are essential in the majority of the minerals. The atomic Cu/Te ratio decreases through the paragenetic sequence. This, and the occurrence of minerals with additional components such as Cl^–, CO_3^(2–), SO_4^(2–) and Fe^(3+) at an intermediate stage, suggests nonmonotonic evolution of the parent fluids, reflecting differing access to or spatial distribution of various components. For the minerals with known crystal structures, two alternative 'structural units' were identified, one consisting only of the Te^(4+) or Te^(6+) oxyanion, while the other also included small, strongly-bound cations such as Cu^(2+). The degree of polymerization for the Te oxyanion correlated with the paragenetic sequence: the monomeric tellurate anions of early minerals were replaced progressively by dimers, chains and sheet structures, which may relate to a decreasing abundance of the 'network modifying' Cu^(2+) cation, analogous to Bowen's discontinuous reaction series in igneous rock-forming silicates. No relationship was seen between paragenetic order and the larger type of structural unit, or structural complexity as defined by information content. This contrasts with results in the literature for evaporite sulfates and pegmatite phosphates. While structure–paragenesis relationships may be widespread, the exact nature of such relationships may be different for different chemical systems and different paragenetic environments

    The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA

    Get PDF
    An unusually diverse array of 25 secondary Te oxysalt minerals has been documented from Otto Mountain, California, and 18 of these from the Bird Nest drift sublocality. A paragenetic sequence for these minerals is proposed, using observed overgrowth relationships plus spatial association data and data from other localities. Apart from Te and O, the components Pb, Cu and H are essential in the majority of the minerals. The atomic Cu/Te ratio decreases through the paragenetic sequence. This, and the occurrence of minerals with additional components such as Cl^–, CO_3^(2–), SO_4^(2–) and Fe^(3+) at an intermediate stage, suggests nonmonotonic evolution of the parent fluids, reflecting differing access to or spatial distribution of various components. For the minerals with known crystal structures, two alternative 'structural units' were identified, one consisting only of the Te^(4+) or Te^(6+) oxyanion, while the other also included small, strongly-bound cations such as Cu^(2+). The degree of polymerization for the Te oxyanion correlated with the paragenetic sequence: the monomeric tellurate anions of early minerals were replaced progressively by dimers, chains and sheet structures, which may relate to a decreasing abundance of the 'network modifying' Cu^(2+) cation, analogous to Bowen's discontinuous reaction series in igneous rock-forming silicates. No relationship was seen between paragenetic order and the larger type of structural unit, or structural complexity as defined by information content. This contrasts with results in the literature for evaporite sulfates and pegmatite phosphates. While structure–paragenesis relationships may be widespread, the exact nature of such relationships may be different for different chemical systems and different paragenetic environments

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Self-care support for children and adolescents with long-term conditions : the REfOCUS evidence synthesis

    Get PDF
    Background: Self-care support (e.g. education, training, peer/professional support) is intended to enhance the self-care capacities of children and young people, while simultaneously reducing the financial burden facing health-care systems. Objectives: To determine which models of self-care support for long-term conditions (LTCs) are associated with significant reductions in health utilisation and costs without compromising outcomes for children and young people. Design: Systematic review with meta-analysis. Population: Children and young people aged 0–18 years with a long-term physical or mental health condition (e.g. asthma, depression). Intervention: Self-care support in health, social care, educational or community settings. Comparator: Usual care. Outcomes: Generic/health-related quality of life (QoL)/subjective health symptoms and health service utilisation/costs. Design: Randomised/non-randomised trials, controlled before-and-after studies, and interrupted time series designs. Data sources: MEDLINE, EMBASE, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, ISI Web of Science, NHS Economic Evaluation Database, The Cochrane Library, Health Technology Assessment database, Paediatric Economic Database Evaluation, IDEAS, reference scanning, targeted author searches and forward citation searching. All databases were searched from inception to March 2015. Methods: We conducted meta-analyses, simultaneously plotting QoL and health utilisation effects. We conducted subgroup analyses for evidence quality, age, LTC and intervention (setting, target, delivery format, intensity). Results: Ninety-seven studies reporting 114 interventions were included. Thirty-seven studies reported adequate allocation concealment. Fourteen were UK studies. The vast majority of included studies recruited children and young people with asthma (n = 66, 68%). Four per cent of studies evaluated ‘pure’ self-care support (delivered through health technology without additional contact), 23% evaluated facilitated self-care support (≤ 2 hours’/four sessions’ contact), 65% were intensively facilitated (≥ 2 hours’/four sessions’ contact) and 8% were case management (≥ 2 hours’ support with multidisciplinary input). Self-care support was associated with statistically significant, minimal benefits for QoL [effect size (ES) –0.17, 95% confidence interval (CI) –0.23 to –0.11], but lacked clear benefit for hospital admissions (ES –0.05, 95% CI –0.12 to 0.03). This finding endured across intervention intensities and LTCs. Statistically significant, minimal reductions in emergency use were observed (ES –0.11, 95% CI –0.17 to –0.04). The total cost analysis was limited by the small number of data. Subgroup analyses revealed statistically significant, minimal reductions in emergency use for children aged ≤ 13 years (ES –0.10, 95% CI –0.17 to –0.04), children and young people with asthma (ES –0.12, 95% CI –0.18 to –0.06) and children and young people receiving ≥ 2 hours per four sessions of support (ES –0.10, 95% CI –0.17 to –0.03). Preliminary evidence suggested that interventions that include the child or young person, and deliver some content individually, may optimise QoL effects. Face-to-face delivery may help to maximise emergency department effects. Caution is required in interpreting these findings. Limitations: Identification of optimal models of self-care support is challenged by the size and nature of evidence available. The emphasis on meta-analysis meant that a minority of studies with incomplete but potentially relevant data were excluded. Conclusions: Self-care support is associated with positive but minimal effects on children and young people’s QoL, and minimal, but potentially important, reductions in emergency use. On current evidence, we cannot reliably conclude that self-care support significantly reduces health-care costs. Future work: Research is needed to explore the short- and longer-term effects of self-care support across a wider range of LTCs. Study registration: This study is registered as PROSPERO CRD42014015452. Funding: The National Institute for Health Research Health Services and Delivery Research programme

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore