27 research outputs found

    Home telemonitoring and remote feedback between clinic visits for asthma.

    Get PDF
    BACKGROUND: Asthma is a chronic disease that causes reversible narrowing of the airways due to bronchoconstriction, inflammation and mucus production. Asthma continues to be associated with significant avoidable morbidity and mortality. Self management facilitated by a healthcare professional is important to keep symptoms controlled and to prevent exacerbations.Telephone and Internet technologies can now be used by patients to measure lung function and asthma symptoms at home. Patients can then share this information electronically with their healthcare provider, who can provide feedback between clinic visits. Technology can be used in this manner to improve health outcomes and prevent the need for emergency treatment for people with asthma and other long-term health conditions. OBJECTIVES: To assess the efficacy and safety of home telemonitoring with healthcare professional feedback between clinic visits, compared with usual care. SEARCH METHODS: We identified trials from the Cochrane Airways Review Group Specialised Register (CAGR) up to May 2016. We also searched www.clinicaltrials.gov, the World Health Organization (WHO) trials portal and reference lists of other reviews, and we contacted trial authors to ask for additional information. SELECTION CRITERIA: We included parallel randomised controlled trials (RCTs) of adults or children with asthma in which any form of technology was used to measure and share asthma monitoring data with a healthcare provider between clinic visits, compared with other monitoring or usual care. We excluded trials in which technologies were used for monitoring with no input from a doctor or nurse. We included studies reported as full-text articles, those published as abstracts only and unpublished data. DATA COLLECTION AND ANALYSIS: Two review authors screened the search and independently extracted risk of bias and numerical data, resolving disagreements by consensus.We analysed dichotomous data as odds ratios (ORs) while using study participants as the unit of analysis, and continuous data as mean differences (MDs) while using random-effects models. We rated evidence for all outcomes using the GRADE (Grades of Recommendation, Assessment, Development and Evaluation Working Group) approach. MAIN RESULTS: We found 18 studies including 2268 participants: 12 in adults, 5 in children and one in individuals from both age groups. Studies generally recruited people with mild to moderate persistent asthma and followed them for between three and 12 months. People in the intervention group were given one of a variety of technologies to record and share their symptoms (text messaging, Web systems or phone calls), compared with a group of people who received usual care or a control intervention.Evidence from these studies did not show clearly whether asthma telemonitoring with feedback from a healthcare professional increases or decreases the odds of exacerbations that require a course of oral steroids (OR 0.93, 95% confidence Interval (CI) 0.60 to 1.44; 466 participants; four studies), a visit to the emergency department (OR 0.75, 95% CI 0.36 to 1.58; 1018 participants; eight studies) or a stay in hospital (OR 0.56, 95% CI 0.21 to 1.49; 1042 participants; 10 studies) compared with usual care. Our confidence was limited by imprecision in all three primary outcomes. Evidence quality ratings ranged from moderate to very low. None of the studies recorded serious or non-serious adverse events separately from asthma exacerbations.Evidence for measures of asthma control was imprecise and inconsistent, revealing possible benefit over usual care for quality of life (MD 0.23, 95% CI 0.01 to 0.45; 796 participants; six studies; I(2) = 54%), but the effect was small and study results varied. Telemonitoring interventions may provide additional benefit for two measures of lung function. AUTHORS' CONCLUSIONS: Current evidence does not support the widespread implementation of telemonitoring with healthcare provider feedback between asthma clinic visits. Studies have not yet proven that additional telemonitoring strategies lead to better symptom control or reduced need for oral steroids over usual asthma care, nor have they ruled out unintended harms. Investigators noted small benefits for quality of life, but these are subject to risk of bias, as the studies were unblinded. Similarly, some benefits for lung function are uncertain owing to possible attrition bias.Larger pragmatic studies in children and adults could better determine the real-world benefits of these interventions for preventing exacerbations and avoiding harms; it is difficult to generalise results from this review because benefits may be explained at least in part by the increased attention participants receive by taking part in clinical trials. Qualitative studies could inform future research by focusing on patient and provider preferences, or by identifying subgroups of patients who are more likely to attain benefit from closer monitoring, such as those who have frequent asthma attacks

    Systematic meta-review of supported self-management for asthma: a healthcare perspective

    Get PDF
    BACKGROUND: Supported self-management has been recommended by asthma guidelines for three decades; improving current suboptimal implementation will require commitment from professionals, patients and healthcare organisations. The Practical Systematic Review of Self-Management Support (PRISMS) meta-review and Reducing Care Utilisation through Self-management Interventions (RECURSIVE) health economic review were commissioned to provide a systematic overview of supported self-management to inform implementation. We sought to investigate if supported asthma self-management reduces use of healthcare resources and improves asthma control; for which target groups it works; and which components and contextual factors contribute to effectiveness. Finally, we investigated the costs to healthcare services of providing supported self-management. METHODS: We undertook a meta-review (systematic overview) of systematic reviews updated with randomised controlled trials (RCTs) published since the review search dates, and health economic meta-analysis of RCTs. Twelve electronic databases were searched in 2012 (updated in 2015; pre-publication update January 2017) for systematic reviews reporting RCTs (and update RCTs) evaluating supported asthma self-management. We assessed the quality of included studies and undertook a meta-analysis and narrative synthesis. RESULTS: A total of 27 systematic reviews (n = 244 RCTs) and 13 update RCTs revealed that supported self-management can reduce hospitalisations, accident and emergency attendances and unscheduled consultations, and improve markers of control and quality of life for people with asthma across a range of cultural, demographic and healthcare settings. Core components are patient education, provision of an action plan and regular professional review. Self-management is most effective when delivered in the context of proactive long-term condition management. The total cost (n = 24 RCTs) of providing self-management support is offset by a reduction in hospitalisations and accident and emergency visits (standard mean difference 0.13, 95% confidence interval -0.09 to 0.34). CONCLUSIONS: Evidence from a total of 270 RCTs confirms that supported self-management for asthma can reduce unscheduled care and improve asthma control, can be delivered effectively for diverse demographic and cultural groups, is applicable in a broad range of clinical settings, and does not significantly increase total healthcare costs. Informed by this comprehensive synthesis of the literature, clinicians, patient-interest groups, policy-makers and providers of healthcare services should prioritise provision of supported self-management for people with asthma as a core component of routine care. SYSTEMATIC REVIEW REGISTRATION: RECURSIVE: PROSPERO CRD42012002694 ; PRISMS: PROSPERO does not register meta-reviews

    Self-care support for children and adolescents with long-term conditions : the REfOCUS evidence synthesis

    Get PDF
    Background: Self-care support (e.g. education, training, peer/professional support) is intended to enhance the self-care capacities of children and young people, while simultaneously reducing the financial burden facing health-care systems. Objectives: To determine which models of self-care support for long-term conditions (LTCs) are associated with significant reductions in health utilisation and costs without compromising outcomes for children and young people. Design: Systematic review with meta-analysis. Population: Children and young people aged 0–18 years with a long-term physical or mental health condition (e.g. asthma, depression). Intervention: Self-care support in health, social care, educational or community settings. Comparator: Usual care. Outcomes: Generic/health-related quality of life (QoL)/subjective health symptoms and health service utilisation/costs. Design: Randomised/non-randomised trials, controlled before-and-after studies, and interrupted time series designs. Data sources: MEDLINE, EMBASE, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, ISI Web of Science, NHS Economic Evaluation Database, The Cochrane Library, Health Technology Assessment database, Paediatric Economic Database Evaluation, IDEAS, reference scanning, targeted author searches and forward citation searching. All databases were searched from inception to March 2015. Methods: We conducted meta-analyses, simultaneously plotting QoL and health utilisation effects. We conducted subgroup analyses for evidence quality, age, LTC and intervention (setting, target, delivery format, intensity). Results: Ninety-seven studies reporting 114 interventions were included. Thirty-seven studies reported adequate allocation concealment. Fourteen were UK studies. The vast majority of included studies recruited children and young people with asthma (n = 66, 68%). Four per cent of studies evaluated ‘pure’ self-care support (delivered through health technology without additional contact), 23% evaluated facilitated self-care support (≤ 2 hours’/four sessions’ contact), 65% were intensively facilitated (≥ 2 hours’/four sessions’ contact) and 8% were case management (≥ 2 hours’ support with multidisciplinary input). Self-care support was associated with statistically significant, minimal benefits for QoL [effect size (ES) –0.17, 95% confidence interval (CI) –0.23 to –0.11], but lacked clear benefit for hospital admissions (ES –0.05, 95% CI –0.12 to 0.03). This finding endured across intervention intensities and LTCs. Statistically significant, minimal reductions in emergency use were observed (ES –0.11, 95% CI –0.17 to –0.04). The total cost analysis was limited by the small number of data. Subgroup analyses revealed statistically significant, minimal reductions in emergency use for children aged ≤ 13 years (ES –0.10, 95% CI –0.17 to –0.04), children and young people with asthma (ES –0.12, 95% CI –0.18 to –0.06) and children and young people receiving ≥ 2 hours per four sessions of support (ES –0.10, 95% CI –0.17 to –0.03). Preliminary evidence suggested that interventions that include the child or young person, and deliver some content individually, may optimise QoL effects. Face-to-face delivery may help to maximise emergency department effects. Caution is required in interpreting these findings. Limitations: Identification of optimal models of self-care support is challenged by the size and nature of evidence available. The emphasis on meta-analysis meant that a minority of studies with incomplete but potentially relevant data were excluded. Conclusions: Self-care support is associated with positive but minimal effects on children and young people’s QoL, and minimal, but potentially important, reductions in emergency use. On current evidence, we cannot reliably conclude that self-care support significantly reduces health-care costs. Future work: Research is needed to explore the short- and longer-term effects of self-care support across a wider range of LTCs. Study registration: This study is registered as PROSPERO CRD42014015452. Funding: The National Institute for Health Research Health Services and Delivery Research programme

    Remote versus face-to-face check-ups for asthma.

    Get PDF
    BACKGROUND: Asthma remains a significant cause of avoidable morbidity and mortality. Regular check-ups with a healthcare professional are essential to monitor symptoms and adjust medication.Health services worldwide are considering telephone and internet technologies as a way to manage the rising number of people with asthma and other long-term health conditions. This may serve to improve health and reduce the burden on emergency and inpatient services. Remote check-ups may represent an unobtrusive and efficient way of maintaining contact with patients, but it is uncertain whether conducting check-ups in this way is effective or whether it may have unexpected negative consequences. OBJECTIVES: To assess the safety and efficacy of conducting asthma check-ups remotely versus usual face-to-face consultations. SEARCH METHODS: We identified trials from the Cochrane Airways Review Group Specialised Register (CAGR) up to 24 November 2015. We also searched www.clinicaltrials.gov, the World Health Organization (WHO) trials portal, reference lists of other reviews and contacted trial authors for additional information. SELECTION CRITERIA: We included parallel randomised controlled trials (RCTs) of adults or children with asthma that compared remote check-ups conducted using any form of technology versus standard face-to-face consultations. We excluded studies that used automated telehealth interventions that did not include personalised contact with a health professional. We included studies reported as full-text articles, as abstracts only and unpublished data. DATA COLLECTION AND ANALYSIS: Two review authors screened the literature search results and independently extracted risk of bias and numerical data. We resolved any disagreements by consensus, and we contacted study authors for missing information.We analysed dichotomous data as odds ratios (ORs) using study participants as the unit of analysis, and continuous data as mean differences using the random-effects models. We rated all outcomes using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS: Six studies including a total of 2100 participants met the inclusion criteria: we pooled four studies including 792 people in the main efficacy analyses, and presented the results of a cluster implementation study (n = 1213) and an oral steroid tapering study (n = 95) separately. Baseline characteristics relating to asthma severity were variable, but studies generally recruited people with asthma taking regular medications and excluded those with COPD or severe asthma. One study compared the two types of check-up for oral steroid tapering in severe refractory asthma and we assessed it as a separate question. The studies could not be blinded and dropout was high in four of the six studies, which may have biased the results.We could not say whether more people who had a remote check-up needed oral corticosteroids for an asthma exacerbation than those who were seen face-to-face because the confidence intervals (CIs) were very wide (OR 1.74, 95% CI 0.41 to 7.44; 278 participants; one study; low quality evidence). In the face-to-face check-up groups, 21 participants out of 1000 had exacerbations that required oral steroids over three months, compared to 36 (95% CI nine to 139) out of 1000 for the remote check-up group. Exacerbations that needed treatment in the Emergency Department (ED), hospital admission or an unscheduled healthcare visit all happened too infrequently to detect whether remote check-ups are a safe alternative to face-to-face consultations. Serious adverse events were not reported separately from the exacerbation outcomes.There was no difference in asthma control measured by the Asthma Control Questionnaire (ACQ) or in quality of life measured on the Asthma Quality of Life Questionnaire (AQLQ) between remote and face-to-face check-ups. We could rule out significant harm of remote check-ups for these outcomes but we were less confident because these outcomes are more prone to bias from lack of blinding.The larger implementation study that compared two general practice populations demonstrated that offering telephone check-ups and proactively phoning participants increased the number of people with asthma who received a review. However, we do not know whether the additional participants who had a telephone check-up subsequently benefited in asthma outcomes. AUTHORS' CONCLUSIONS: Current randomised evidence does not demonstrate any important differences between face-to-face and remote asthma check-ups in terms of exacerbations, asthma control or quality of life. There is insufficient information to rule out differences in efficacy, or to say whether or not remote asthma check-ups are a safe alternative to being seen face-to-face

    The Role of Education, Monitoring, and Symptom Perception in Internet-Based Self-management Among Adolescents With Asthma: Secondary Analysis of a Randomized Controlled Trial

    No full text
    BackgroundInternet-based self-management programs improve asthma control and the asthma-related quality of life in adults and adolescents. The components of self-management programs include education and the web-based self-monitoring of symptoms; the latter requires adequate perception in order to timely adjust lifestyle or medication or to contact a care provider. ObjectiveWe aimed to test the hypothesis that adherence to education and web-based monitoring and adequate symptom perception are important determinants for the improvement of asthma control in self-management programs. MethodsWe conducted a subgroup analysis of the intervention group of a randomized controlled trial, which included adolescents who participated in the internet-based self-management arm. We assessed the impacts that attendance in education sessions, the frequency of web-based monitoring, and the level of perception had on changes in asthma control (Asthma Control Questionnaire [ACQ]) and asthma-related quality of life (Pediatric Asthma Quality of Life Questionnaire) from baseline to 12 months after intervention. ResultsAdolescents who attended education sessions had significant and clinically relevant improvements in asthma control (ACQ score difference: −0.6; P=.03) and exhibited a nonsignificant trend of improvement in asthma-related quality of life (Pediatric Asthma Quality of Life Questionnaire score difference: −0.45; P=.15) when compared to those who did not adhere to education. Frequent monitoring alone did not improve asthma control (P=.07) and quality of life (P=.44) significantly, but its combination with education did result in improved ACQ scores (difference: −0.88; P=.02). There were no significant differences in outcomes between normoperceivers and hypoperceivers. ConclusionsEducation, especially in combination with frequent web-based monitoring, is an important determinant for the 1-year outcomes of asthma control in internet-based self-management programs for adolescents with partly controlled and uncontrolled asthma; however, we could not establish the effect of symptom perception. This study provides important knowledge on the effects of asthma education and monitoring in daily life

    Internet-based self-management compared with usual care in adolescents with asthma: a randomized controlled trial

    No full text
    Asthma control often is poor in adolescents and this causes considerable morbidity. Internet-based self-management (IBSM) improves asthma-related quality of life in adults. We hypothesized that IBSM improves asthma-related quality of life in adolescents. Adolescents (12-18 years) with persistent and not well-controlled asthma participated in a randomized controlled trial with 1 year follow-up and were allocated to IBSM (n = 46) or usual care (UC, n = 44). IBSM consisted of weekly asthma control monitoring with treatment advice by a web-based algorithm. Outcomes included asthma-related quality of life (Pediatric Asthma Quality of Life Questionnaire, PAQLQ) and asthma control (Asthma Control Questionnaire, ACQ) and were analyzed by a linear mixed-effects model. At 3 months, PAQLQ improved with 0.40 points (95% CI: 0.17-0.62, P < 0.01), by IBSM compared to 0.0 points for UC (P = 0.02 for the difference). At 12 months the between-group difference was -0.05 (95% CI: -0.50 to 0.41, P = 0.85). At 3 months ACQ improved more in IBSM than in UC (difference: -0.32 points; 95% CI: -0.56 to -0.079, P < 0.01). At 12 months the difference was -0.05 (95% CI: -0.35 to 0.25, P = 0.75). IBSM improved asthma-related quality of life and asthma control in adolescents with not well-controlled asthma after 3 months, but not after 12 month
    corecore