1,709 research outputs found

    Doubly Special Relativity and Finsler geometry

    Full text link
    We discuss the recent proposal of implementing Doubly Special Relativity in configuration space by means of Finsler geometry. Although this formalism leads to a consistent description of the dynamics of a particle, it does not seem to give a complete description of the physics. In particular, the Finsler line element is not invariant under the deformed Lorentz transformations of Doubly Special Relativity. We study in detail some simple applications of the formalism.Comment: 8 pages, plain Te

    Is there a Degenerative Process Going on in the Brain of People with Schizophrenia?†

    Get PDF
    Schizophrenia is a biological and behavioural disorder which manifests itself in neurocognitive dysfunctions. The question of whether these key characteristics of the disorder are due to schizophrenia being a degenerative disorder has been discussed for more than 100 years. Neuropsychological data indicate that neurocognitive functions are relatively stable over time after illness onset. Several studies show that there is a decline in neurocognitive functioning prior to and in connection with onset of illness. There is no convincing evidence, however, that there is a progressive neurodegenerative process after onset of illness. Morphological data, on the other hand, indicate a degenerative process. Several novel longitudinal studies indicate a rapid reduction of vital brain tissues after onset of illness. In this paper some ideas about compensatory reactions and Cognitive Reserve Theory is outlined as possible explanations of the recent magnetic resonance imaging studies that show structural changes in the brain after the onset of schizophrenia, at the same time as cognitive functioning does not become more impaired. Determining whether schizophrenia is a neurodegenerative illness with progressive structural changes in the brain after debut of the illness, or a neurodevelopmental disorder starting in early life, is of significant importance for understanding the pathophysiology of the illness and its treatments

    A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

    Get PDF
    This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms

    Quantization from Hamilton-Jacobi theory with a random constraint

    Full text link
    We propose a method of quantization based on Hamilton-Jacobi theory in the presence of a random constraint due to the fluctuations of a set of hidden random variables. Given a Lagrangian, it reproduces the results of canonical quantization yet with a unique ordering of operators if the Lagrange multiplier that arises in the dynamical system with constraint can only take binary values ±/2\pm\hbar/2 with equal probability.Comment: 6 pages, accepted for publication in Physica

    Is General Relativity a simpler theory?

    Get PDF
    Gravity is understood as a geometrization of spacetime. But spacetime is also the manifold of the boundary values of the spinless point particle in a variational approach. Since all known matter, baryons, leptons and gauge bosons are spinning objects, it means that the manifold, which we call the kinematical space, where we play the game of the variational formalism of an elementary particle is greater than spacetime. This manifold for any mechanical system is a Finsler metric space such that the variational formalism can always be interpreted as a geodesic problem on this space. This manifold is just the flat Minkowski space for the free spinless particle. Any interaction modifies its flat Finsler metric as gravitation does. The same thing happens for the spinning objects but now the Finsler metric space has more dimensions and its metric is modified by any interaction, so that to reduce gravity to the modification only of the spacetime metric is to make a simpler theory, the gravitational theory of spinless matter. Even the usual assumption that the modification of the metric only involves dependence of the metric coefficients on the spacetime variables is also a restriction because in general these coefficients are dependent on the velocities. In the spirit of unification of all forces, gravity cannot produce, in principle, a different and simpler geometrization than any other interaction.Comment: 10 pages 1 figure, several Finsler metric examples and a conclusion section added. Minor correction

    Interplanetary Transfer Trajectories Using the Invariant Manifolds of Halo Orbits

    Get PDF
    Throughout the history of interplanetary space travel, the Newtonian dynamics of the two-body problem have been used to design orbital trajectories to traverse the solar system. That is, that a spacecraft orbits only one large celestial body at a time. These dynamics have produced impressive interplanetary trajectories utilizing numerous gravity assists, such as those of Voyager, Cassini, Rosetta and countless others. But these missions required large amounts of delta-v for their maneuvers and therefore large amounts of fuel mass. As we desire to travel farther and more extensively in space, these two-body dynamics lead to impossibly high delta-v values, and missions become infeasible due to the massive amounts of fuel that they would need to carry. In the last few decades a new dynamical system has been researched in order to find new ways of designing mission trajectories: the N-body problem. This utilizes the gravitational acceleration from multiple celestial bodies on a spacecraft, and can lead to unconventional, but very useful trajectories. The goal of this thesis is to use the dynamics of the Circular Restricted Three-Body Problem (CRTBP) to design interplanetary transfer trajectories. This method of modelling orbital dynamics takes into account the gravitational acceleration of two celestial bodies acting on a spacecraft, rather than just one. The invariant manifolds of halo orbits about Sun-planet Lagrange points are used to aid in the transfer from one planet to another, and can lead into orbital insertion about the destination planet or flyby trajectories to get to another planet. This work uses this method of dynamics to test transfers from Earth to both Jupiter and Saturn, and compares delta-v and time of flight values to traditional transfer methods. Using the CRTBP can lead to reduced delta-v amounts for completing the same missions as two-body dynamics would. The aim of this work is to research if using manifolds for interplanetary transfers could be superior for some high delta-v missions, as it could drastically reduce the required delta-v for maneuvers. With this method it could be possible to visit more distant destinations, or carry more mass of scientific payloads, due to the reduced fuel requirements. Results of this research showed that using manifolds to aid in interplanetary transfers can reduce the delta-v of both departure from Earth and arrival at a destination planet. For transfers to Jupiter the delta-v for the interplanetary transfer was reduced by 4.12 km/s compared to starting and ending in orbits about the planets. For a transfer to Saturn the delta-v required for the interplanetary transfer was reduced by 6.77 km/s. These delta-v savings are significant and show that utilizing manifolds can lead to lower energy interplanetary transfer trajectories, and have the potential to be useful for high delta-v missions
    corecore