109 research outputs found

    Non-idealities in lab-scale kinetic testing: a theoretical study of a modular Temkin reactor

    Get PDF
    The Temkin reactor can be applied for industrial relevant catalyst testing with unmodified catalyst particles. It was assumed in the literature that this reactor behaves as a cascade of continuously stirred tank reactors (CSTR). However, this assumption was based only on outlet gas composition or inert residence time distribution measurements. The present work theoretically investigates the catalytic CO2 methanation as a test case on different catalyst geometries, a sphere, and a ring, inside a single Temkin reaction chamber under isothermal conditions. Axial gas-phase species profiles from detailed computational fluid dynamics (CFD) are compared with a CSTR and 1D plug-flow reactor (PFR) model using a sophisticated microkinetic model. In addition, a 1D chemical reactor network (CRN) model was developed, and model parameters were adjusted based on the CFD simulations. Whereas the ideal reactor models overpredict the axial product concentrations, the CRN model results agree well with the CFD simulations, especially under low to medium flow rates. This study shows that complex flow patterns greatly influence species fields inside the Temkin reactor. Although residence time measurements suggest CSTR-like behavior, the reactive flow cannot be described by either a CSTR or PFR model but with the developed CRN model

    Heterogeneity in susceptibility dictates the order of epidemiological models

    Full text link
    The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but do not incorporate population-level heterogeneity in infection susceptibility. We show that variation strongly influences the rate of infection, while the infection process simultaneously sculpts the susceptibility distribution. These joint dynamics influence the force of infection and are, in turn, influenced by the shape of the initial variability. Intriguingly, we find that certain susceptibility distributions (the exponential and the gamma) are unchanged through the course of the outbreak, and lead naturally to power-law behavior in the force of infection; other distributions often tend towards these "eigen-distributions" through the process of contagion. The power-law behavior fundamentally alters predictions of the long-term infection rate, and suggests that first-order epidemic models that are parameterized in the exponential-like phase may systematically and significantly over-estimate the final severity of the outbreak

    Automated Generation of Microkinetics for Heterogeneously Catalyzed Reactions Considering Correlated Uncertainties

    Get PDF
    The study presents an ab-initio based framework for the automated construction of microkinetic mechanisms considering correlated uncertainties in all energetic parameters and estimation routines. 2000 unique microkinetic models were generated within the uncertainty space of the BEEF-vdW functional for the oxidation reactions of representative exhaust gas emissions from stoichiometric combustion engines over Pt(111) and compared to experiments through multiscale modeling. The ensemble of simulations stresses the importance of considering uncertainties. Within this set of first-principles-based models, it is possible to identify a microkinetic mechanism that agrees with experimental data. This mechanism can be traced back to a single exchange-correlation functional, and it suggests that Pt(111) could be the active site for the oxidation of light hydrocarbons. The study provides a universal framework for the automated construction of reaction mechanisms with correlated uncertainty quantification, enabling a DFT-constrained microkinetic model optimization for other heterogeneously catalyzed systems

    Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.Comment: 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letter

    Predictors of nurturant parenting in teen mothers living in three generational families

    Full text link
    Direct and indirect effects of grandparents on maternal nurturance in teen mothers (TM) living in three-generational families were explored with path analytic techniques in a sample of 107 working-class families. Perceived support from the teen's mother, grandparents' nurturance toward the baby, and the presence of the grandfather as a father figure in the home were hypothesized as increasing TM nurturance. TM nurturance was found to be positively predicted by grandparent nurturance and negatively predicted by TM perceived support from her mother. The strongest predictor of TM nurturance was grandfather nurturance toward the baby.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43953/1/10578_2006_Article_BF02353198.pd

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Accurate Enthalpies of Formation for PFAS from First-Principles: Combining Different Levels of Theory in a Generalized Thermochemical Hierarchy

    No full text
    The enthalpies of formation are computed for a large number of per- and poly fluoroalkyl substances (PFAS) using a connectivity-based hierarchy (CBH) approach. A combination of different electronic structure methods are used to provide the reference data in a hierarchical manner. The ANL0 method, in conjunction with the active thermochemical tables, provides enthalpies of formation for smaller species with subchemical accuracy. Coupled-cluster theory with explicit correlations are used to compute enthalpies of formation for intermediate species, based upon the ANL0 results. For the largest PFAS, including perfluorooctanoic acid (PFOA) and heptafluoropropylene oxide dimer acid (GenX), coupled-cluster theory with local correlations is used. The sequence of homodesmotic reactions proposed by the CBH are determined automatically by a new open-source code, AutoCBH. The results are the first reported enthalpies of formation for the majority of the species. A convergence analysis and global uncertainty quantification confirm that the enthalpies of formation at 0 K should be accurate to within ±5 kJ/mol. This new approach is not limited to PFAS, but can be applied to many chemical systems

    Accurate Enthalpies of Formation for PFAS from First-Principles: Combining Different Levels of Theory in a Generalized Thermochemical Hierarchy

    No full text
    The enthalpies of formation are computed for a large number of per- and poly fluoroalkyl substances (PFAS) using a connectivity-based hierarchy (CBH) approach. A combination of different electronic structure methods are used to provide the reference data in a hierarchical manner. The ANL0 method, in conjunction with the active thermochemical tables, provides enthalpies of formation for smaller species with subchemical accuracy. Coupled-cluster theory with explicit correlations are used to compute enthalpies of formation for intermediate species, based upon the ANL0 results. For the largest PFAS, including perfluorooctanoic acid (PFOA) and heptafluoropropylene oxide dimer acid (GenX), coupled-cluster theory with local correlations is used. The sequence of homodesmotic reactions proposed by the CBH are determined automatically by a new open-source code, AutoCBH. The results are the first reported enthalpies of formation for the majority of the species. A convergence analysis and global uncertainty quantification confirm that the enthalpies of formation at 0 K should be accurate to within ±5 kJ/mol. This new approach is not limited to PFAS, but can be applied to many chemical systems
    • …
    corecore