13 research outputs found

    Design of the VISTA-ITL Test Facility for an Integral Type Reactor of SMART and a Post-Test Simulation of a SBLOCA Test

    Get PDF
    To validate the performance and safety of an integral type reactor of SMART, a thermal-hydraulic integral effect test facility, VISTA-ITL, is introduced with a discussion of its scientific design characteristics. The VISTA-ITL was used extensively to assess the safety and performance of the SMART design, especially for its passive safety system such as a passive residual heat removal system, and to validate various thermal-hydraulic analysis codes. The VISTA-ITL program includes several tests on the SBLOCA, CLOF, and PRHRS performances to support a verification of the SMART design and contribute to the SMART design licensing by providing proper test data for validating the system analysis codes. A typical scenario of SBLOCA was analyzed using the MARS-KS code to assess the thermal-hydraulic similarity between the SMART design and the VISTA-ITL facility, and a posttest simulation on a SBLOCA test for the shutdown cooling system line break has been performed with the MARS-KS code to assess its simulation capability for the SBLOCA scenario of the SMART design. The SBLOCA scenario in the SMART design was well reproduced using the VISTA-ITL facility, and the measured thermal-hydraulic data were properly simulated with the MARS-KS code

    Design of the VISTA-ITL Test Facility for an Integral Type Reactor of SMART and a Post-Test Simulation of a SBLOCA Test

    No full text
    To validate the performance and safety of an integral type reactor of SMART, a thermal-hydraulic integral effect test facility, VISTA-ITL, is introduced with a discussion of its scientific design characteristics. The VISTA-ITL was used extensively to assess the safety and performance of the SMART design, especially for its passive safety system such as a passive residual heat removal system, and to validate various thermal-hydraulic analysis codes. The VISTA-ITL program includes several tests on the SBLOCA, CLOF, and PRHRS performances to support a verification of the SMART design and contribute to the SMART design licensing by providing proper test data for validating the system analysis codes. A typical scenario of SBLOCA was analyzed using the MARS-KS code to assess the thermal-hydraulic similarity between the SMART design and the VISTA-ITL facility, and a posttest simulation on a SBLOCA test for the shutdown cooling system line break has been performed with the MARS-KS code to assess its simulation capability for the SBLOCA scenario of the SMART design. The SBLOCA scenario in the SMART design was well reproduced using the VISTA-ITL facility, and the measured thermal-hydraulic data were properly simulated with the MARS-KS code

    Methionine consumption by cancer cells drives a progressive upregulation of PD-1 expression in CD4 T cells

    No full text
    Abstract Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion

    Overview of the KoRIA Facility for Rare Isotope Beams

    No full text
    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 p mu A and proton beams up to 600 MeV, 660 mu A. Overall features of the KoRIA facility are presented with a focus on the accelerator design.close5

    Conductive Nanomaterials for Printed Electronics

    No full text

    Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    No full text

    FarmacologĂ­a central de la transmisiĂłn nociceptiva

    No full text
    corecore