5,954 research outputs found

    Singlet and triplet bipolarons on the triangular lattice

    Get PDF
    We study the Coulomb-Fr\"ohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Fr\"ohlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard UU. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.Comment: Proceedings of SNS 200

    Polarons in highly doped atomically thin graphitic materials

    Full text link
    Polaron spectral functions are computed for highly doped graphene-on-substrate and other atomically thin graphitic systems using the diagrammatic Monte Carlo technique. The specific aim is to investigate the effects of interaction on spectral functions when the symmetry between sub-lattices of a honeycomb lattice has been broken by the substrate or ionicity, inducing a band gap. Introduction of electron-phonon coupling leads to several polaronic features, such as band-flattening and changes in particle lifetimes. At the K point, differences between energies on each sub-lattice increase with electron-phonon coupling, indicating an augmented transport gap, while the spectral gap decreases slightly. Effects of phonon dispersion and long-range interactions are investigated, and found to lead to only quantitative changes in spectra

    Electron and phonon dispersions of the two dimensional Holstein model: Effects of vertex and non-local corrections

    Get PDF
    I apply the newly developed dynamical cluster approximation (DCA) to the calculation of the electron and phonon dispersions in the two dimensional Holstein model. In contrast to previous work, the DCA enables the effects of spatial fluctuations (non-local corrections) to be examined. Approximations neglecting and incorporating lowest-order vertex corrections are investigated. I calculate the phonon density of states, the renormalised phonon dispersion, the electron dispersion and electron spectral functions. I demonstrate how vertex corrections stabilise the solution, stopping a catastrophic softening of the (Ļ€,Ļ€)(\pi,\pi) phonon mode. A kink in the electron dispersion is found in the normal state along the (Ī¶,Ī¶)(\zeta,\zeta) symmetry direction in both the vertex- and non-vertex-corrected theories for low phonon frequencies, corresponding directly to the renormalised phonon frequency at the (Ļ€,0)(\pi,0) point. This kink is accompanied by a sudden drop in the quasi-particle lifetime. Vertex and non-local corrections enhance the effects at large bare phonon frequencies.Comment: I am posting reprints of the final submitted versions of previous articles to improve access. Here ARPES "kinks" are discussed. Article was published in 2003. 17 pages, 9 figure

    Breakdown of Migdal--Eliashberg theory via catastrophic vertex divergence at low phonon frequency

    Full text link
    We investigate the applicability of Migdal--Eliashberg (ME) theory by revisiting Migdal's analysis within the dynamical mean-field theory framework. First, we compute spectral functions, the quasi-particle weight, the self energy, renormalised phonon frequency and resistivity curves of the half-filled Holstein model. We demonstrate how ME theory has a phase-transition-like instability at intermediate coupling, and how the Engelsberg--Schrieffer (ES) picture is complicated by low-energy excitations from higher order diagrams (demonstrating that ES theory is a very weak coupling approach). Through consideration of the lowest-order vertex correction, we analyse the applicability of ME theory close to this transition. We find a breakdown of the theory in the intermediate coupling adiabatic limit due to a divergence in the vertex function. The region of applicability is mapped out, and it is found that ME theory is only reliable in the weak coupling adiabatic limit, raising questions about the accuracy of recent analyses of cuprate superconductors which do not include vertex corrections.Comment: 19 pages, 10 figures, accepted for publication in Journal of Low Temperature Physic
    • ā€¦
    corecore