364 research outputs found

    Data-driven crowd simulation

    Get PDF
    Our objective is to simulate entire cities with the most realistic possible scenario. This kind of systems require a lot of processing power, therefore we use hybrid computer clusters with graphics cards (GPUs). GPUs allow us to accelerate calculations and visualization

    The Summer Treatment Programâs Effect on Behaviorally Challenged Orthodox Jewish Children

    Get PDF
    The Summer Treatment Program (STP) is an 8-week, research-based, behavior modification approach utilizing a unique point system that has been shown to improve the noncompliant behavior of children in a day camp setting. Due to religious reasons, the children of the Orthodox Jewish (OJ) community are unable to attend the original STP. Guided by behaviorism, the purpose of this research study was to assess whether a faith-based STP is effective in improving the noncompliant behavior of OJ behaviorally challenged children. In this study, the relationship between the completion of the STP and the behaviors of hyperactivity, aggression, conduct, anxiety, attention, conduct, adaptability, and functional communication, as measured by the Behavior Assessment for Children 3rd edition of the OJ children, were assessed. Archival data from a sample of 40 children were gathered through an ex post facto repeated measures design and analyzed using a 2 x 2 repeated measures mixed factorial ANOVA to show the difference in scores from pre- to posttest. The results showed there was a significant decrease from pre- to posttest in the behaviors of hyperactivity, aggression, conduct, attention, and adaptability. There was no significant improvement from pre- to posttest in the areas of anxiety and functional communication. These results show the STP was effective in improving a wide range of behaviors. Future researchers can study the long-term impact for the children of OJ community attending the STP. This research study contributes to positive social change by supplying empirical evidence that a faith-based STP is a highly effective method for treating behaviorally challenged children of the OJ community

    Coupling camera-tracked humans with a simulated virtual crowd

    Get PDF
    Our objective with this paper is to show how we can couple a group of real people and a simulated crowd of virtual humans. We attach group behaviors to the simulated humans to get a plausible reaction to real people. We use a two stage system: in the first stage, a group of people are segmented from a live video, then a human detector algorithm extracts the positions of the people in the video, which are finally used to feed the second stage, the simulation system. The positions obtained by this process allow the second module to render the real humans as avatars in the scene, while the behavior of additional virtual humans is determined by using a simulation based on a social forces model. Developing the method required three specific contributions: a GPU implementation of the codebook algorithm that includes an auxiliary codebook to improve the background subtraction against illumination changes; the use of semantic local binary patterns as a human descriptor; the parallelization of a social forces model, in which we solve a case of agents merging with each other. The experimental results show how a large virtual crowd reacts to over a dozen humans in a real environment.Peer ReviewedPostprint (author’s final draft

    A new feature extraction method for signal classification applied to cat spinal cord signals

    Full text link
    In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments

    Speech-driven facial animation with realistic dynamics

    Full text link

    Fixed Dystonia in Complex Regional Pain Syndrome: a Descriptive and Computational Modeling Approach

    Get PDF
    Background: Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback. Methods: We systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors). Results: For the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114). Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength. Conclusions: Findings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Quantitative neuroanatomy for connectomics in Drosophila.

    Get PDF
    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.Funding came from the HHMI Janelia Visiting Scientist program (AC), Swiss National Science Foundation grant 31003A 132969 (AC), HHMI, and the Institute of Neuroinformatics of the University of Zurich and ETH Zurich.This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.12059.00
    • …
    corecore