59 research outputs found

    Nucleoside reverse-transcriptase inhibitor dosing errors in an outpatient HIV clinic in the electronic medical record era

    Get PDF
    Information on antiretroviral dosing errors among health care providers for outpatient human immunodeficiency virus (HIV)-infected patients is lacking. We evaluated factors associated with nucleoside reverse-transcriptase inhibitor dosing errors in a university-based HIV clinic using an electronic medical record. Overall, older age, minority race or ethnicity, and didanosine use were related to such errors. Impaired renal function was more common in older patients and racial or ethnic minorities and, in conjunction with fixed-dose combination drugs, contributed to the higher rates of errors in nucleoside reverse-transcriptase inhibitor dosing. Understanding the factors related to nucleoside reverse-transcriptase inhibitor dosing errors is an important step in the building of preventive tools

    Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans

    Get PDF
    The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10−14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10−4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10−8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10−9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10−7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS–SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBLσ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a

    The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

    Full text link
    Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-yy distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-yy map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made publi

    The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters

    Full text link
    We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations σ8=0.819±0.015\sigma_8 = 0.819 \pm 0.015 at 1.8% precision, S8σ8(Ωm/0.3)0.5=0.840±0.028S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.840\pm0.028 and the Hubble constant H0=(68.3±1.1)kms1Mpc1H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1} at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: σ8=0.812±0.013\sigma_8 = 0.812 \pm 0.013, S8σ8(Ωm/0.3)0.5=0.831±0.023S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.831\pm0.023 and H0=(68.1±1.0)kms1Mpc1H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}. These measurements agree well with Λ\LambdaCDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S8S_8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1σ\sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z0.55z\sim 0.5-5 on mostly-linear scales and galaxy lensing at z0.5z\sim 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Λ\LambdaCDM, limiting the sum of the neutrino masses to mν<0.12\sum m_{\nu} < 0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Λ\LambdaCDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological likelihood data is here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al. Mass maps will be released when papers are publishe

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF
    corecore