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Abstract

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular
mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in
populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We
therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from
ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African
American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P =4 x 10~ %) in intron 16 of SCN5A,
a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A
RNA expression in human atrial tissue (P= 1.1 x 10~*). High density genotyping revealed that the SCN5A association region in
African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromo-
some 18 in MYL12A (rs1662342, P=4.9 x 10 %) and chromosome 1 near CD1E and SPTA1 (rs7547997, P=7.9 x 10~°). The 22 QRS loci
previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in
African Americans (P=9.9 x 10*7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and
SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two
novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered
in populations of European descent were transferable to African Americans when adequate power was achieved.

Introduction

The QRS duration, measured by the surface electrocardiogram
(ECG), reflects depolarization and conduction of the electrical sig-
nal throughout the ventricular myocardium. Longer QRS duration
is associated with an increased risk of cardiovascular (CV) mortal-
ity in Caucasians and all-cause mortality in African Americans
from study populations unselected for specific CV disorders (1,2).
Among patients hospitalized for heart failure with reduced left
ventricular ejection fraction, prolonged QRS duration (> 120 milli-
seconds) is associated with post-discharge all-cause mortality (3).
The QRS duration has been reported to be shorter in African
Americans compared to Caucasians, even after taking into ac-
count cardiovascular risk factors and coronary heart disease (4-6).

Prior genome-wide association (GWA) studies of QRS duration
performed in populations of European descent have identified 22
independent QRS loci (7,8). The genetic architecture of QRS dura-
tion among African Americans, by contrast, is largely unknown.
Expanding GWA studies to populations of African descent holds
the potential to refine association regions due to shorter-range
linkage disequilibrium (LD) and to discover novel genetic associa-
tions given the presence of population-specific allele frequencies
(9,10). We therefore performed a GWAS meta-analysis of QRS du-
ration in a total of 13,031 African Americans from 10 cohort stud-
ies in order to: (1) fine-map the QRS association regions previously
identified among those of European descent; (2) discover novel
QRS loci through a meta-analysis of results from African
American cohorts as well as a transethnic meta-analysis; (3) deter-
mine whether SNP associations with QRS duration discovered in
populations of European descent are transferable to African
Americans.

Results

GWAS meta-analysis of QRS duration in African
Americans

We conducted a meta-analysis of 2,955,816 autosomal SNPs in
13,031 African Americans from 10 GWA studies of QRS

duration (Supplementary Materials, Tables S1 and S2), with little
evidence of genomic inflation in the individual cohorts
(Supplementary Materials, Figs S1-S10 and Table S1) or the
meta-analysis (Supplementary Material, Fig. S11, A=1.027). The
percentage of European genetic ancestry was similar across the
cohorts (Supplementary Material, Table S2) and was not signifi-
cantly associated with QRS duration (Supplementary Material,
Table S3).

A single SNP, 153922844 (MAF=0.42), in intron 16 of the
cardiac sodium channel gene SCN5A, was associated with
QRS duration among African Americans at the genome-wide
significance threshold (§+SE=0.94ms*0.12ms, P=4x10 %)
(Table 1, Fig. 1 and Supplementary Material, Fig. S12).
Adjustment for local ancestry minimally altered the associa-
tion (Table 1). We fine-mapped the SCN5A-SCN10A region
surrounding this signal by examining SNPs genotyped using
the MetaboChip array in ARIC and WHI PAGE participants
and imputed in the WHI SHARE participants (11). In the
meta-analysis of the three cohorts, a second SNP in intron 16
of SCN5A, 1512635898, was in high LD with 153922844
(HapMap YRI: r*=0.93, Table 2) and was similarly associated
with QRS duration (Table 2). Furthermore, LD was low (1000
Genomes AFR population r*=0.03) between rs3922844 and
157626962, an SCN5A missense mutation (S1103Y) associated
with cardiac conduction and arrhythmias that is common
in African Americans but rare in populations of European
descent (12-15).

While the most significant SNP associations reported from
previous GWA studies of QRS interval among other ethnic
groups are similarly located on chromosome 3 at the SCN5A/
SCN10A locus, the SNP association region is broad, spanning ap-
proximately 300kb, and multiple independent signals have
been identified (Fig. 1) (7,8,16). By contrast, the genome-wide as-
sociation among African Americans points to a single SNP (Fig.
1). The rs3922844-QRS association discovered in African
American cohorts replicated in cohorts of European ancestry
(P=2x10""%) (Table 3), but this variant was not in high LD with
other SCN5A or SCN10A index SNPs among European ancestry
individuals (Table 3).


http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1

Human Molecular Genetics, 2016, Vol. 25, No. 19 | 4353

SNPs: IS0 10 IO 00 00T YNV N NN o

20

—log;g(p—value)

" AA 1s3922844 - 100
08

0.6

o - 80

— 60

(q/o) ares uoneuIgqUIOIaY

—log;g(p-value)

EA 153922844

— 100

(g/N9) 8rel uoneuIgqLIoIaY

SLC22A14—~  ACVR2B— <+— SCN5A <—SCN10A =—SCN11A
- —— A — HHEHE— - W+
XYLB— EXOG —
S —H— H—
| T T | T
38.4 38.5 38.6 38.7 38.8

Position on chr3 (Mb)

Figure 1. Regional association plot at SCN5A/SCN10A locus. African American SNP association meta-analysis results are plotted in the top panel, and meta-analysis re-
sults from cohorts of European ancestry are plotted in the bottom panel. The AA index SNP (rs3922844) is designated by a red diamond in both panels. The LD (r?)
shown is relative to the AA index SNP and is based on HapMap YRI in the top panel and HapMap CEU in the bottom panel. Gray circles are SNPs without HapMap LD
data. The X-axis marks the chromosomal position. Recombination rates estimated from African Americans and HapMap CEU individuals are shown in the top and bot-
tom panels, respectively. The dashed horizontal lines in the top and bottom panels mark the GWAS significance level in African Americans (2.5 x 10 ~ ) and popula-

tions of European descent (5.0 x 10 ~ ), respectively.

SNP functional annotation and association with SCN5A
expression in human cardiac tissue

Functional annotation indicated that rs3922844 and variants in
LD (1000 Genomes AFR population r*>0.2) overlapped and were
near regulatory genomic features. These variants altered tran-
scription factor binding motifs and overlapped with DNAse I hy-
persensitive sites (DHS) (Supplementary Material, Table S4). In
multiple cell types, rs3922844 was located near a cluster of tran-
scription factor binding events and a peak of Histone H3 Lysine

4 mono-methylation, a marker of putative enhancers
(Supplementary Material, Fig. S13). Rs3922844 and variants in
LD overlapped with DHS and enhancer histone marks in fetal
heart tissue based on data from the Roadmap Epigenomics
Mapping Consortium (Supplementary Materials, Table S4 and
Fig. S14).

We next assessed the functional relevance of rs3922844 by
examining its association with SCN5A RNA expression levels in
human cardiac tissue. The rs3922844 C allele associated with
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Table 1. Association results for rs3922844 with and without adjustment for local ancestry estimates

Assay Adjusted for global ancestry? Adjusted for local ancestry®®
Study (G2 CAF® n B + SEgc Pcc B * SEgc Pcc
WHI I 0.42 4012 0.86 + 0.21 6x10~° 0.90 *+ 0.23 3x10~°
ARIC I 0.41 2372 0.61 +0.28 0.03 0.68 +0.29 0.02
JHS I 0.40 1918 1.41 +0.32 1x10°° 1.40 + 0.33 2x10°°
MESA I 0.43 1554 1.02 = 0.36 0.005 1.17 = 0.38 0.002
Health ABC G 0.43 993 0.98 + 0.47 0.04 0.99 + 0.50 0.05
HANDLS G 0.41 945 0.96 + 0.43 0.03 0.85 + 0.45 0.06
CHS G 0.44 621 0.84 + 0.56 0.13 ND ND
CFS I 0.39 315 0.16 + 0.80 0.84 0.21 +0.82 0.80
BLSA G 0.44 153 3.27 +0.99 9x10~* ND ND
BHS G 0.42 147 ~1.14 + 1.27 0.37 ND ND
Meta-analysis
All studies 0.42 12,877 0.94 + 0.12 4x10 14 - -
LA studies® 0.42 12,109 0.91 +0.13 3x107 %3 0.95 *+ 0.13 7x10713

G = directly genotyped SNP, I =imputed SNP.

®Coded allele frequency. C and T are the coded and non-coded alleles for rs3922844, respectively. CAF for the meta-analysis is the weighted average across the 10

cohorts.

Studies with local ancestry (LA) estimates: WHI, ARIC, JHS, MESA, Health ABC, HANDLS, and CFS.

48 and SE expressed in units of milliseconds.

°ND = not determined.

longer QRS duration was also associated with lower SCN5A RNA
expression in left atrial appendage samples from 289 individ-
uals of European ancestry (B + SE (units are RNA levels on log,
scale) =-0.11 + 0.03, P=1.6x10"?) and 40 individuals of African
ancestry (B + SE=-0.29 = 0.11, P=0.013), as well as in the meta-
analysis across the two ethnic groups (f*SE= -0.13*0.03,
P=1.1x10"* Fig. 2).

Transethnic meta-analysis of QRS duration

QRS duration GWAS results from 13,031 African Americans (re-
ported above) and from 40,407 European-ancestry individuals in
the previously reported CHARGE analysis (8) were meta-ana-
lysed, with little evidence of genomic inflation (A=1.018,
Supplementary Material, Fig. S15). In addition to the previously
identified QRS loci (Supplementary Materials, Fig. S16 and Table
S5), the transethnic meta-analysis identified SNPs at two
novel loci associated with cardiac ventricular conduction: an
intronic SNP (rs1662342, P=4.9x10"% in a myosin light
chain regulatory gene, MYL12A, on chromosome 18 and an
intergenic SNP (rs7547997, P=7.9x10"°) near CDIE on chromo-
some 1 (Table 4, Figs 3 and 4). For both SNPs, the coded al-
lele frequency was higher in African Americans than
individuals of European ancestry (Table 4), indicating that
the addition of African American participants may have pro-
vided greater gains in power for these two SNPs than the addi-
tion of an equivalent number of individuals of European
ancestry.

We examined whether rs1662342 or rs7547997 were eQTLs in
human left atrial appendage tissue. While the rs1662342 A allele
was nominally associated with higher MYL12A RNA levels
in the meta-analysis of results from 289 individuals of
European ancestry and 40 individuals of African ancestry
(B = SE=0.08 + 0.04, P=0.03), the association was not significant
after correction for multiple testing. Gene expression for only

two genes (CD1C and CDIE) was detected within 250kb up-
stream and downstream of 1s7547997, and this SNP was not sig-
nificantly associated with expression of either of these genes
(P>0.05).

Gene set enrichment and transferability of QRS-
associated loci and SNPs

A gene set enrichment analysis (GSEA) revealed that genes
identified from the 22 European-descent QRS loci were enriched
for significant SNP associations in the African American QRS
meta-analysis results, suggesting the transferability of QRS as-
sociations at the gene-set level between the two population
groups. Gene-based P-values for 9 of the 22 QRS loci were in the
top 95™ percentile of all gene scores genome-wide in African
Americans, whereas only one would be expected by chance,
and the 22 QRS loci were significantly enriched for significant
QRS-SNP associations in African Americans compared with ran-
domly sampled gene sets (GSEA empirical P=9.9x1077).
Importantly, the direction of the association was the same for
all index SNPs at the 22 previously identified QRS loci in both
ethnic groups, further supporting the transferability of associa-
tions between those of European and African ancestry (Tables 3
and 5, Supplementary Material, Table S6).

SNP association transferability at SCN5A/SCN10A locus

The most significant SNP associations reported from previous
GWA studies of QRS interval among other ethnic groups are
similarly located on chromosome 3 at the SCN5A/SCN10A locus,
and multiple independent signals have been identified (Fig. 1)
(7,8,16). The coded allele frequencies for all SCN5A/SCN10A
European-ancestry index SNPs were lower among African
Americans than individuals of European ancestry, which along
with the smaller sample size among the African Americans we
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Table 2. Association results from dense SNP genotyping study at the SCN5A locus

153922844

LD (1)

Meta-analysis

WHI PAGE WHI SHARE

ARIC

Coded/Reference
allele (CAF)

SE® (P)

B =

SE® (P)

B =

SE® (P)

B =

SEP (P)

B =

Position?

SNP

0.93

1.05 + 0.19 (1x10®)

38,601,069 A/C (0.30) 2911 1.03 + 0.34 (0.002) 725 1.18 + 0.52 (0.02) 3283 1.04 + 0.24 (2x107)

rs12635898

*Position based on NCBI reference sequence build 36.

b and SE expressed in units of milliseconds.

°LD estimates between rs12635898 and rs3922844 based on rs12635898 genotype data from unrelated YRI samples on MetaboChip arrays used in the PAGE study and rs3922844 genotype data from unrelated YRI samples down-

loaded from HapMap phase 2 data.
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examined, reduces power to replicate (Table 3). Of the 4 inde-
pendent European descent QRS index SNPs with adequate
power (>80%) to replicate among African Americans, 2 were sig-
nificant, including the top SNP-QRS association among individ-
uals of European ancestry, rs6801957 (P =8x10 * among African
Americans, Table 3).

The absence of genome-wide significant QRS associations
among SNPs within SCN10A in African Americans does not ap-
pear to be due to a difference in the MAF distribution of SCN10A
SNPs between populations of European and African descent
(Supplementary Material, Table S7). Compared to populations of
European descent (Supplementary Material, Fig. S17), LD was re-
duced and haplotypes were shorter in the SCN10A region in
populations of African descent (Supplementary Materials, Figs
S18 and S19), which could impact the ability for assayed SNPs to
tag potential non-genotyped causal variants.

SNP association transferability at the remaining known
QRS loci

At the remaining 21 QRS loci (7,8), there was adequate power
(>80%) to replicate European-ancestry index SNPs at 8 loci, and
index SNPs at 4 of these 8 loci replicated in African Americans
at the multiple-testing corrected significance threshold of
P=0.002 (CDKN1A, NFIA, HAND1 and TBXS5, Table 5, binomial
test P=4x10"*%). Of the 13 loci where there was not adequate
power to replicate, a European-ancestry index SNP at one locus
replicated in African Americans (SETBP1, Supplementary
Material, Table S6). At the more liberal replication significance
threshold of 0.05, European-ancestry index SNPs at 5 of the 8
loci with adequate power replicated (binomial test P=2x10"°),
and index SNPs at 7 of the 13 loci without adequate power repli-
cated (binomial test P=1x10 %) (Table 5 and Supplementary
Material, Table S6).

We next expanded our characterization of each of the 22
European-ancestry QRS loci to identify the most significant SNP
association with QRS duration among African Americans
(African-American index SNPs) and to determine the LD be-
tween European and African-ancestry index SNPs. Other than
SCN5A, two other loci (TBX5 and NFIA) contained African-
ancestry index SNPs that passed the significance threshold for
discovery (P<1.4x10 °) within the 22 QRS loci (Table 5). The
African-ancestry index SNP associations in TBX5 (rs7312625)
and NFIA (rs2207791) replicated at the genome-wide significance
level in populations of European descent (Table 5). For both loci,
our results did not provide evidence for allelic heterogeneity, as
the African-ancestry index SNPs were in moderate LD with the
European-ancestry index SNPs (HapMap ASW 2 >0.65, HapMap
CEU r*>0.5) (Table 5, Supplementary Materials, Fig. S20 and
S21).

Fine-mapping intervals based on Bayes factors and the re-
sulting posterior probabilities generated from a transethnic
meta-analysis with MANTRA (17) were constructed at the 22
QRS loci previously identified in populations of European de-
scent and the two new QRS loci reported here. At each locus,
the 95% credible set (CS) defines the genomic boundary that
contains the smallest set of SNPs accounting for 95% of the pos-
terior probability (Supplementary Material, Table S8). Other
than the loci at which the 95% CS contained a single SNP, the
largest percentage decrease from the genome-wide significant
interval discovered in European populations to the 95% CS in
the transethnic meta-analysis was at the TBX5 locus
(Supplementary Material, Fig. S20).


http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw284/-/DC1

Human Molecular Genetics, 2016, Vol. 25, No. 19

4356

‘9¢ ping 2duenbas 30ua1ajal [FDN UO PIseq UORISOd,

"SPUODSI{[IW JO S}UN U Passa1dxa 3§ pue ¢ "Pap[oq a19Mm ;  OTXS'C > SaN[RA- pue A13A0DSIP

Spmm-awoua3d Uo paseq sem dUedYIUSIS ‘Mol A19A0DSTp A11sadue UBDLY SY) U] "PAP[Oq 312m Z00'0 > SaN[eA-d PUe SJNS paynuspt Ajsnotasid og a3 Jo uonedi[dal uo paseq sem adULDYIUSIS ‘SmMOI AI9A0DSIP A1)S9DUE URILY-UOU UJg
'S0°0 > @n[ea-d ;X S,UBIYd0D U3 J1 pap[oq sonsness I f1reusdoreieH;

"SPUODISI{[TW JO SITUN UT passaidxa IS pue ¢ 'pap[oq 319m Z00'0 > SaN[eA-d PUR PIOYSIIY]

uonedrdal 3y} UO paseq sem 30URIYIUSIS ‘Mo1 AI3A0DSIP A13S30UR URDLYY 3} U] "PAp[Oq 3I8M ;  OTX('S > SaN[BA-d PUBR P[OYS2IY} AISAODSIP aplm-awouad oy} UO paseq sem adUBdYIUSIS ‘Smol A19A0DSIp A13sadue UuedLyy-uou uf,
-dydiowouow sem 10 uonemndod depyde ay3 ut padfiouss 10u sem dNS U3 S21BIIPUL AN ¥8CC6EST PUB NS X2pul Uusamiaq a1,

'SdNS 0¢ 103 Sunsn(pe 000 =» Surdaas] pue sojdwies ULILISUIY-UBILY Ul PIAISS]O SE 9dUELIRA eI} pue Adusnbaij afay(e 109339 a3 Suisn uonendod A19a00s1p ueadoing ur pajrtodal 9IS 109139 10919P 03 19MOd,

"sdNS ¢ 103 Sunsnipe 700’0 =» urdesy pue se[duwres ueadoing ul paAIasqo se 3dUBLIRA JTe1} PuE Aousnbaly (3 19212 papod a3 BUIsn §3[Nsa1 3YVDI/LNIDOD Ul pa31odal 9z1s 193}J2 109313p 03 19M0d,

‘Kouanbaiy = baig ‘9[a[[e 103JJ3 PAPOd =VD,

(5;_0TXY) (¢v0) (g,-0TXT) (69°0) (£5Z'665°8€) uonur

- - - - 901 IT0F ¥6°0 b} 66°0 L'€T 80°0 ¥ 950 o) vV € VSNDS /¥¥8TT6E81

(¢-01%/) (st0) (_01%2) (9z°0) @) (€5£'%E5'8€) uonur

S00 000 0z°0 8¢°0 00  STOFIV0— ) - 00 800 F ¥ 0— D) vi € 20Xd /11Z150¢s1

(c—o1x€) (81°0) (g-0T%E) (92°0) (®) (99€255°8¢) orusdreiul

aN 100 000 1670 00 ST°0 ¥ 950 o} - 9€S 80°0 ¥ 80 o) vi € VSNDS  /6/85980TS1

(82°0) (%00) (5;,_0TXT) (o1°0) (® (£26'809°8€) uonur

aN an 01’0 620 00 08'0 ¥ 98°0 o} - 00 010 ¥ 640 o) vi € VSNDS  /96680/11S1

(5-01%/) (tT°0) (zz-01%9) (tz°0) @) (€06'2€9'8€) uonur

60°0 $0°0 ST0 06°0 00  61°0F /80— 1 - 8'€C 600 F ¥80— 1 vi € VSNDS  /£L00T/TTSI

(90°0) (o1°0) (52-01%2) (e€0) (®) (6£6'769'8€) orus3reiur

100 100 000 z8°0 L 910 F0£0- o} - T/S  [00F990- o) vi € VOINDS /¥TL158651

(€00) (ot0) (,-0TxS) (ov0) (912) (6£9'T¥L'8€E) 9SUSSSTW

€00 100 100 €40 00 0Z0 T ¥%0 v - 8y L00FSL0 v ueIsy/vi € VOINDS /04656951

(,_01%8) (¢r0) (5-0TXT) (10 @) (61€‘ThL'8€) uonur

aN 100 000 S6°0 00 9T'0 ¥ ¥S0 1 - £sy LO00F LLO 1 vi € VOINDS /£S6108981

5(°24) RESK)) (39y) uonyendod ouad uonjelouUUR

MSY A nan  iemod el 92355  (ba1g) vD  emod 52l 99357d  o(ba13) vD Kenodsiq  y(uomisod) 1yD  1sa1eaN /dNS x3pul
n@b a1¥¥8zzesst Anisadue ueduyy Anyssoue ueadoing

STDO] VOTNDS/VSNDS 3U3 38 AM[IqRIe)SueI} UONRDOSSE NS '€ 3[Rl



1.0 -
5
2 05
] 2
<
i o
<< 0.0l
)
=
@)
([) ]
D -05-
"5 °
=
2 .
-1.0-
T T T
T TC cc
rs3922844
B 1.0 -
c
o
2 0.5- i
— [ ]
s L §s
| fou.
<< 0.0-
Lf) L]
2 5
@)
(I) T‘
B -05-
"J,‘ o
5
ko) »|
<( -
-1.0-
-

T T 1
T TC CC

rs3922844

Figure 2. Association between rs3922844 genotype and SCN5A expression in hu-
man atrial tissue. Box plots display data from individuals of African ancestry (A)
and European ancestry (B). Plotted along the Y-axis are RNA levels adjusted for
covariates. The bottom and top of each box indicates the 25" and 75" percen-
tiles, and the band within the box is the median. Whiskers extend to the most
extreme value or the most extreme value within 1.5*interquartile range (IQR),
whichever value is closer to the median. The fitted regression line is shown in
blue.

Discussion

Our genetic association study of cardiac ventricular conduction
among African Americans identified variants in a putative tran-
scriptional regulatory region within intron 16 of the cardiac so-
dium channel SCN5A that were associated with QRS duration
and SCN5A RNA levels. Furthermore, two novel loci associated
with cardiac ventricular depolarization and conduction were
identified through a transethnic GWAS meta-analysis. Finally,
our study demonstrated the transferability of QRS-SNP associa-
tions between populations of European and African-descent by
both gene-set enrichment analysis as well as direct evaluation
of top QRS-SNP associations.
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Figure 3. Regional association plot of transethnic meta-analysis results at
MYL12A locus. Transethnic meta-analysis SNP association results are plotted in
the top panel, meta-analysis results from cohorts of European ancestry are plot-
ted in the middle panel, and African American SNP association meta-analysis
results are plotted in the bottom panel. The transethnic index SNP (rs1662342) is
designated by a red diamond in all panels. The LD () shown is relative to the in-
dex SNP and is based on HapMap CEU in the top and middle panels and is based
on HapMap YRI in the bottom panel. Gray circles are SNPs without HapMap LD
data. The X-axis marks the chromosomal position. Recombination rates aver-
aged across HapMap populations, in HapMap CEU individuals, and in African
Americans are shown in the top panel, middle panel, and bottom panel, respec-
tively. The dashed horizontal line in the top and middle panels marks the
GWAS significance level for European ancestry (5.0 x 10 %) and in the bottom
panel marks the GWAS significance level for African Americans (2.5 x 10~ &).
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Figure 4. Regional association plot of transethnic meta-analysis results at chro-
mosome 1q23.1. Transethnic meta-analysis SNP association results are plotted
in the top panel, meta-analysis results from cohorts of European ancestry are
plotted in the middle panel, and African American SNP association meta-analy-
sis results are plotted in the bottom panel. The transethnic index SNP
(rs7547997) is designated by a red diamond in all panels. The LD (r?) shown is
relative to the index SNP and is based on HapMap CEU in the top and middle
panels and is based on HapMap YRI in the bottom panel. Gray circles are SNPs
without HapMap LD data. The X-axis marks the chromosomal position.
Recombination rates averaged across HapMap populations, in HapMap CEU in-
dividuals, and in African Americans are shown in the top panel, middle panel,
and bottom panel, respectively. The dashed horizontal line in the top and mid-
dle panels marks the GWAS significance level for European ancestry (5.0 x 10 )
and in the bottom panel marks the GWAS significance level for African
Americans (2.5 x 10°8).

Table 4. Novel genome-wide significant SNP associations from transethnic meta-analysis

African ancestry Meta-analysis

European ancestry

B = SEgc (Pac)® rd

CA (Freq)®

+ SEgc (Poo)®

p

CA (Freq)®

SEcc (Pac)*

B+

Chr Position® Nearby Genes ~ SNP CA (Freq)®

SNP

Annotation

0.0
0.0

0.47 * 0.09 (4.9x10%)
0.44 + 0.08 (7.9x1079)

A (0.16)

0.35 + 0.16 (0.03) 16.6

A(0.21)

34.7
0.0

0.53 + 0.10 (3.1x107)
0.48 + 0.10 (1.0x10~°)

intron A (0.14)

MYL12A

18 3,245,301

1

151662342

A(0.33)

18.8

0.38 + 0.12 (1.5x107%)

A (0.59)

A (0.16)

CDI1E, OR10T2, intergenic

156,607,897

157547997

SPTA1

#Position based on NCBI reference sequence build 36.

bCA

frequency.

coded effect allele. Freq =

°p and SE expressed in units of milliseconds.

’s X? P-value < 0.05.

dHeterogeneity I? statistics bolded if the Cochran
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Our GWAS meta-analysis with additional fine-mapping
identified two SNPs in high LD (rs3922844 and rs12635898,
HapMap YRIL: r*=0.93) in intron 16 of the cardiac sodium chan-
nel SCN5A gene associated with QRS duration among African
Americans. SCN5A encodes the pore-forming o subunit of the
cardiac voltage-gated sodium channel Na,1.5, and opening of
the Na,1.5 channel drives rapid membrane depolarization dur-
ing the cardiac action potential (18). Common and rare SCN5A
genetic variants have been associated with cardiac depolariza-
tion, conduction, and repolarization (7,8,19). The most signifi-
cantly associated SNP identified in this study (rs3922844) has
been previously shown to associate with atrioventricular con-
duction (PR interval) among African Americans that included a
subset of the same cohorts as this study (20,21), similar to other
SNPs at this locus where variants that prolong PR interval also
prolong QRS duration.

Functional annotation indicated that rs3922844 and other
intronic variants in LD overlapped with a putative intronic
transcriptional regulatory region. While functional intronic
enhancers have not been identified in SCN5A, transcriptional
enhancers are commonly found within intronic regions (22).
Consistent with rs3922844’s overlap with putative transcrip-
tional regulatory features, we found that rs3922844 was
associated with SCN5A expression in human atrial tissue. The
153922844 C allele associated with longer QRS duration was
also associated with lower SCN5A RNA expression in human
cardiac tissue, supporting the hypothesis that fewer available
Na,1.5 channels would lead to subtly slower depolarization
and conduction in cardiac tissue. It is intriguing that both
genome-wide significant SNPs were located within intron 16 of
SCNS5A, which is immediately adjacent to an alternative splic-
ing event that skips exons 17 and 18, resulting in the produc-
tion of the non-functional Na,1.5b isoform that contains a
partial deletion of the sixth transmembrane spanning segment
of the DIl domain and a deletion of a large segment of the intra-
cellular DII-DIII linker (18). While the array-based expression
data in our eQTL study did not enable our examination of spe-
cific transcript isoforms, future studies could investigate this
potential molecular consequence that could lead to an in-
creased production of non-functional transcripts that would
further reduce the number of functional Na,1.5 voltage-gated
sodium channels.

Using a transethnic meta-analysis approach, two novel QRS
loci were identified: one in the gene MYL12A on chromosome 18
(rs1662342) and one in an intergenic region on chromosome one
(rs7547997) near a cluster of five CD1 genes. For both SNPs, the
higher allele frequency in African Americans combined with
the 13,031 additional sample size increased power to find asso-
ciations in the transethnic meta-analysis.

While the association between intronic SNP rs1662342 and
MYL12A gene expression did not pass multiple test correction,
the nominal significance of the association provided suggestive
evidence that rs1662342 could be associated with MYL12A gene
expression. MYL12A encodes the myosin regulatory light chain
that binds to a variety of myosin heavy chain IIs (MHC IIs) in
multiple cell types (23). MYL12A is expressed in the heart and
cardiac myocytes in humans (24). Knockdown of MYL12A in
mouse fibroblasts resulted in a significant reduction in cellular
contractility, a disruption of cellular structure and morphology,
and a decrease in non-muscle MHC II expression (23). The most
significant SNP associations with RR interval in populations of
European descent were located in MYHS, the a-heavy chain sub-
unit of cardiac myosin (7,25), and the associations replicated in
African Americans (26). Our results suggest that genetic

variation in a different component of myosin, myosin regula-
tory light chain, may play a role in QRS duration.

The candidate gene for the second novel QRS locus is not as
obvious, as rs7547997 was not associated with gene expression
of nearby genes in our eQTL study. SNP rs7547997 is located
within an intergenic region on chromosome one near a cluster
of five CD1 genes, which mediate lipid and glycolipid antigen
presentation to T cells (27) and near a cluster of 15 olfactory re-
ceptor genes (28). SPTA1, which encodes o-spectrin, is located
240kb from rs7547997, but measures of SPTA1 RNA did not pass
quality filters in our eQTL study and rs7547997’s association
with SPTA1 gene expression could not be determined. Spectrin,
a tetramer composed of a-B dimers, acts as an actin crosslinking
and molecular scaffold protein that regulates cell shape and
membrane protein localization (29). Spectrin binds ankyrin-G,
and ankyrin-G is required for Na,1.5 membrane targeting and
excitability (29). The E1053K SCN5A variant disrupts the
ankyrin-G/Na,1.5 binding interaction and results in Brugada
Syndrome (30). In mouse cardiomyocytes, pB-spectrin co-
localizes with ankyrin-G and Na,1.5 (31). B-spectrin also targets
CaMKII to Na,1.5 where CaMKII regulates Na,1.5 by phosphory-
lation (31). While SPTA1 might be an attractive candidate gene,
further studies are needed to identify causal gene(s) and vari-
ant(s) in the novel QRS association region identified on chromo-
some one.

Our transethnic meta-analysis results provide evidence that
a large proportion of SNP and loci associations with QRS dura-
tion are shared between populations of European and African
descent. Gene-set enrichment analysis revealed that the 22 pre-
viously reported European-descent QRS-associated loci were
enriched for significant QRS-SNP associations among African
Americans compared with randomly selected gene sets
matched for gene set characteristics such as gene size and LD
properties, which provided evidence for replication at the gene-
set level. Where the power for replication was adequate, half of
the European-descent index SNPs were also associated with
QRS duration among African Americans. Even among the SNPs
where power was inadequate, the majority were at least nomi-
nally associated with QRS duration among African Americans.
Furthermore, the direction of the association for all European-
ancestry index SNPs was the same in both ethnic groups. While
these results taken together provide evidence for the transfer-
ability of QRS genetic associations from one ethnic group to an-
other, there are some exceptions. There are SNPs associated
with QRS duration among those of European descent, for in-
stance rs9851724 near SCN10A (Table 3) and rs4687718 in TKT
(Table 5), where despite adequate power, no evidence for associ-
ation was identified among African Americans.

In addition to replication sample size and population-
specific allele frequencies, SNP associations could fail to repli-
cate across continental ancestry groups for several reasons, in-
cluding: (1) population-specific causal variants, (2) population-
specific LD between assayed SNPs and causal variants, and (3)
interactions between SNPs and population-specific non-genetic
factors (9,32). In a systematic survey of SNPs identified through
GWA studies (GWAS SNPs), the allele frequency and LD with
nearby SNPs differed significantly between population groups
for a number of GWAS SNPs, suggesting that at least some
GWAS SNPs identified in European populations might not gen-
eralize to other populations (10). In addition, it has been posited
that rare variants, which are more likely to be population-
specific (33-36), can create synthetic associations with common
variants identified in GWA studies, which would result in the
lack of transferability of findings across populations (37). Others



have argued that synthetic associations might exist, but they
are unlikely to account for most GWAS results (38,39). While a
direct test of the synthetic association hypothesis requires a
comprehensive collection of rare and common variants, our
GWAS in African Americans provides an opportunity to test a
prediction from the synthetic association hypothesis that SNP
associations would not generalize across populations.

Well-powered studies for a limited number of traits and dis-
eases have provided evidence that a majority of GWAS SNPs
discovered in populations of European descent generalize to
multiple populations (40-43). For instance, a high proportion of
SNP associations with blood lipids discovered in populations of
European descent generalized to populations of non-European
descent (44,45), but allelic heterogeneity was observed at some
loci (45,46). A recent systematic examination of GWAS SNP
replication across populations found that 45.8% of GWAS SNPs
initially identified in populations of European descent replicated
in East Asian populations, and the percentage increased to
76.5% when replication attempts were limited to those that
achieved sufficient power (47). The same study found that only
7 of 73 (9.6%) SNP associations replicated in populations of
African descent, and the replication percentage only increased
to 20% among the 25 replication attempts that achieved suffi-
cient power (47). In an analysis of five traits and diseases in
the Population Architecture Using Genomics and Epidemiology
(PAGE) study, a consortium of multi-ancestry population-based
studies, a significant proportion of GWAS SNPs discovered
in European populations replicated in populations of non-
European descent (43). However, the effect estimates in non-
European populations tended to be closer to the null, especially
in African Americans (43). Our analysis of SNP associations with
QRS duration is consistent with findings from other traits;
namely, SNP associations generalize at most loci but not all.
GWA studies of ECG traits other than QRS duration have been
conducted in African Americans, and SNP association transfer-
ability has been found (13,20,21,26,48,49). In two large meta-
analyses, the proportion of SNP associations that replicated
in African Americans was 7 of 13 for RR interval and 10 of 22
for QT interval at o =0.05 (26,48). While Dickson et al. predicted
that synthetic associations would be inconsistent across
populations (37), results from our study and others indicate
that a majority of SNP associations do generalize across popula-
tions. Continuing to perform well-powered GWA studies in
African Americans should reveal whether SNP associations for
a variety of traits and conditions are transferable.

In conclusion, by conducting a GWAS meta-analysis of QRS
duration in African Americans, we refined the SCN5A associa-
tion region to a single intron, and the associated SNP rs3922844
was also associated with reduced SCN5A expression in human
atrial tissue in individuals of African and European ancestry.
Two novel genome-wide significant SNP associations in or near
intriguing candidate genes (MYL12A and SPTA1) were identified
using transethnic meta-analysis. In addition, the high propor-
tion of QRS associations that were transferable between popula-
tions of European and African-descent indicated that, at many
of the associated loci, common genetic variation shared across
populations contributes to QRS duration.

Materials and Methods
Study samples and ECG recordings

The following ten cohorts with African American participants
contributed to this study (in order of decreasing sample size):
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the Women’s Health Initiative (WHI), the Atherosclerosis Risk in
Communities (ARIC) study, the Jackson Heart Study (JHS), the
Multi-Ethnic Study of Atherosclerosis (MESA), the Health, Aging,
and Body Composition Study (Health ABC), the Healthy Aging in
Neighborhoods of Diversity across the Life Span study
(HANDLS), the Cardiovascular Health Study (CHS), the
Cleveland Family Study (CFS), the Baltimore Longitudinal Study
on Aging (BLSA) study, and the Bogalusa Heart Study (BHS).
Detailed descriptions of the study samples and ECG recording
methods are provided in Supplementary Material, Text S1. The
European-descent participants and cohorts that contributed to
this analysis have been previously described (8). The study was
approved by the Institutional Review Board at all participating
institutions. All individuals included in this analysis provided
written informed consent.

Genotyping and genotype imputation

Cohorts used Affymetrix or lllumina SNP genotyping arrays and
applied quality control filters to samples and SNPs
(Supplementary Material, Table S1). Participants unlikely to be
of African descent based on principal component analysis were
excluded from the analysis (Supplementary Material, Text S1).
Genotype imputation was performed using MACH or Beagle
software. Individual studies performed genotype imputation us-
ing reference haplotypes that consisted of either a mixture of
phased haplotype data from HapMap 2 YRI and CEU in a 1:1 ra-
tio or a combination of HapMap 2 YRI and CEU in a 1:1 ratio and
HapMap 3 YRI, CEU, and ASW in a 1:1:1 ratio (Supplementary
Material, Table S1). Detailed descriptions of genotyping meth-
ods, quality control steps, and imputation methods can be
found in Supplementary Materials, Text S1 and Table S1.

Genome-wide association analysis among African
Americans

Study participants were excluded from analysis based on the
following criteria: missing covariates, younger than 18 years of
age, atrial fibrillation on the ECG, history of heart failure or myo-
cardial infarction, QRS duration>120ms, Wolff-Parkinson-
White pattern, pacemaker or defibrillator implant, or use of
class I and III antiarrhythmic medications. Genetic association
analysis was performed in each cohort using linear regression
models with the following covariates: age, sex, study site (if
multiple sites were present), BMI, height, and principal compo-
nents derived from principal component analysis (PCA) of geno-
type data (50) (Supplementary Material, Text S1). The exclusion
criteria and covariate adjustment we applied were the same as
those applied in a previous GWAS of QRS duration in popula-
tions of European descent (8), which facilitated comparisons of
results between the two studies. In addition to adjustment for
global genetic ancestry estimates, the genome-wide significant
SNP association was additionally adjusted for local genetic an-
cestry estimates (see below for local ancestry estimation de-
tails). GWA studies in ARIC, JHS, MESA, and CFS were performed
as part of the Candidate gene Association Resource (CARe) using
QRS standardized residuals adjusted for the covariates men-
tioned above (51,52). All cohorts except for CFS performed a
GWAS using PLINK, R, MACH2QTL, or Merlin (Supplementary
Materials, Table S1 Table and Text S1). The family-based CFS
study performed a GWAS using linear mixed models to account
for relatedness (52,53). A subcohort of JHS was family-based, but
previous analyses determined that the use of methods
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accounting for family structure had minimal influence on effect
estimates, so linear regression was used as in previous studies
(52). Imputed allele dosages were modelled with an additive
mode of inheritance. When available, results from directly gen-
otyped SNP data were used in preference over those from im-
puted SNP data. Detailed descriptions of cohort-specific GWAS
analytic methods can be found in S1 Text.

Prior to meta-analysis, GWAS results from each cohort were
filtered to remove SNPs with minor allele frequency
(MAF) <0.01 or imputation quality scores < 0.3. Effect estimates
and their standard errors estimated from cohorts that used QRS
standardized residuals as the phenotype (ARIC, JHS, MESA, and
CFS) were transformed back to units of milliseconds by multi-
plying by the study-specific standard deviation of the residuals.
Cohort-specific GWAS results were combined using fixed effect
meta-analysis with inverse variance weights as implemented in
METAL (54). SNPs that were non-autosomal or were only pre-
sent in a single study were excluded from analysis. Genomic
control was applied to the results from each cohort prior to
meta-analysis and to the results of the meta-analysis (double
GC-correction) (Supplementary Material, Table S1) (55). To
maintain an experiment-wide type I error rate of 0.05, a
genome-wide significance threshold of 2.5x10°® was pre-
specified based on a Bonferroni correction for the 2 million inde-
pendent common variants estimated to exist in the genomes of
individuals of African ancestry (56). Heterogeneity across sam-
ples was assessed using Cochran’s X? test of heterogeneity with
9 degrees of freedom (57) and the I? statistic (58). A transethnic
GWAS meta-analysis of QRS duration was performed using
fixed-effect inverse variance weighted meta-analysis to com-
bine the double GC-corrected African American GWAS meta-
analysis results with the double GC-corrected European ances-
try CHARGE GWAS meta-analysis results (8).

Global and local genetic ancestry was estimated in ARIC,
JHS, MESA, and CFS cohorts using ANCESTRYMAP (59) and
HAPMIX (60) as previously described (52). For the WHI cohort,
global ancestry was estimated using Frappe (61) and local an-
cestry was estimated using SABRE (62). For the HANDLS and
Health ABC cohorts, STRUCTURE (63) was used to estimate
global ancestry, as previously described for the Health ABC co-
hort (64), and LAMP (65) was used to estimate local ancestry.
Additional details of global and local ancestry estimation can be
found in S1 Text. Linear regression was used to estimate the as-
sociation between global genetic ancestry estimates and QRS
duration.

Variant annotation was performed using HaploReg (66),
which leveraged data from the 1000 Genomes Project (36),
ENCODE (67), and the Roadmap Epigenomics Mapping
Consortium (68).

Genome-wide SNP results from the GWAS in African
Americans and the transethnic GWAS will be made available
through the dbGaP CHARGE summary results site under dbGaP
accession phs000930.

Gene set enrichment analysis

A gene set enrichment analysis (GSEA) was performed using
MAGENTA version 2.4 (69) on the QC-filtered double GC-
corrected African American GWAS meta-analysis results.
Briefly, MAGENTA assigns a gene score based on the most sig-
nificant SNP association in the gene region, corrects for poten-
tial gene score confounders (e.g., gene size and number of

independent SNPs), and determines the proportion of gene
scores in the gene set above a specified percentile cut-off (i.e.,
the leading edge fraction). The construction of gene scores from
the minimum QRS-SNP association P-value for each gene region
enabled a gene score to be significant in the presence of allelic
heterogeneity, i.e., different SNPs that are the most significantly
associated with QRS duration at each locus in populations of
European and African descent. The significance of the gene set’s
leading edge fraction was determined using an empirical null
distribution of 10,000 leading edge fractions from randomly
sampled gene sets matched to the user-defined gene set by
gene score confounder characteristics. To enable MAGENTA to
calculate the number of SNPs per gene for populations of
African descent, we generated a genome-wide list of SNP posi-
tions after SNPs in high LD (pairwise genotypic correlation
r*>>0.8) were removed by applying PLINK’s LD pruning function
to HapMap phase 2 YRI genotype data using sliding windows of
50 SNPs moving by 5 SNP increments (70).

The candidate gene set was created using the gene closest to
the index SNP from the GWAS of QRS duration previously con-
ducted by the CHARGE consortium (8), the largest GWAS of QRS
duration, and included: SCN5A, SCN10A, CDKN1A, PLN, NFIA,
HAND1, TBX20, SIPA1L1, TBX5, TBX3, VTI1A, SETBP1, STRN, TKT,
CRIM1, CDKN2C, PRKCA, IGFBP3, CASQ2, KLF12, LRIG1, DKK1, and
GOSR2. SCN5A and SCN10A were individually included in our
gene set because the previously published CHARGE GWAS of
QRS duration determined that SNP associations in these adja-
cent genes were independent (8).

Locus-specific replication and regional association
analysis

The 30 European ancestry index SNPs (EA index SNPs) from the
22 previously reported EA QRS loci that were examined for repli-
cation in African Americans were 3 SCN10A SNPs, 3 SCN5A
SNPs, 1 EXOG SNP, 2 CDKN1A SNPs, 2 TBX5 SNPs, and a single
SNP from each of the other 19 previously reported loci (7,8,16).
To account for the 30 examined SNPs, a significance threshold
of 0.002 was adopted. The following parameters were used in
power calculations for the 30 SNP replication analysis: o =0.002,
African American sample size =13,031, African American QRS
duration mean*=SD=289.23+9.70ms (weighted average and
pooled SD across the 10 COGENT/CARe cohorts), the previously
reported SNP effect size, and the SNP coded allele frequency in
populations of African descent (weighted average across the 10
COGENT/CARe cohorts).

In the analysis of the genomic region surrounding each of
the European-ancestry index SNPs, each region was defined as
the genomic interval encompassing all SNPs with QRS associa-
tion P-values <5x10°® from the largest GWAS meta-analysis
conducted in individuals of European ancestry (8), and then ex-
tending the genomic interval boundaries by 100kb in both direc-
tions. To set the significance threshold, the number of
independent SNPs in these 22 regions was determined from
HapMap phase 2 YRI SNP genotype data using the same LD
pruning procedure that was described for our GSEA method. For
the 22 previously reported QRS loci, 3,526 independent SNPs
were identified and a Bonferroni-based significance threshold of
1.4x107° was adopted.

At each of the 22 previously identified QRS loci, the most sig-
nificant SNP association detected in African Americans (AA in-
dex SNP) was also examined in GWAS results from populations
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of European descent (8). Power to replicate African-ancestry in-
dex SNP associations in populations of European descent was
calculated using the following parameters: o=0.002, sample
size of individuals with European ancestry =40,407, QRS dura-
tion mean*=SD from individuals of European ances-
try=88.32+10.13ms (estimated from 2,845 CHS subjects of
European ancestry after application of exclusion factors de-
scribed above), African-ancestry index SNP effect size, and the
previously reported SNP coded allele frequency in populations
of European descent (8). All power calculations were performed
using QUANTO (71).

Regional association plots were created using LocusZoom
(72), customized to separately plot recombination rates esti-
mated from African Americans (73) and HapMap CEU individ-
uals. For Supplementary Materials, Figs S17-S19, LD plots were
created using Haploview and LD blocks were estimated using
95% confidence bounds on D prime (74,75).

95% Credible set construction

Regions used to construct credible sets (CS) at the 22 QRS loci
discovered in populations of European descent were defined as
genomic intervals encompassing all SNPs with QRS association
P-values <5x10 ~ ® reported by Sotoodehnia et al. (8), and then
extending those genomic intervals by 100kb in both directions.
At the two new QRS loci reported here, intervals 100kb up-
stream and downstream of the transethnic index SNP were
used as regions for CS construction. Transethnic meta-analysis
of fixed-effect meta-analysis results from populations of
European descent (8) and African Americans was performed us-
ing MANTRA (17). As previously described (76) and in the con-
text of a transethnic meta-analysis (77), for n SNPs in a region, a
Bayes factor (BF;) was estimated for each SNP; using MANTRA,
and the posterior probability for SNP; is equal to

BF;
>oi 1 BE;

SNPs with high posterior probabilities are more likely to be
associated with a trait than SNPs with low posterior probabili-
ties. SNPs at each region were ranked by their posterior proba-
bilities in decreasing order, and the 95% CS consisted of the
smallest set of ranked SNPs for which the cumulative sum of
their posterior probabilities reached 0.95. The genomic interval
of a 95% CS was the range of the positions of the SNPs in the CS.

Metabochip analysis of SCN5A-SCN10A gene region

To more comprehensively evaluate genetic variation in the
SCN5A-SCN10A genomic region, we examined SNP associations
using the MetaboChip, a high-density custom Illumina iSelect
array that includes SNPs from the 1000 Genomes Project (11,78).
In the SCN5A-SCN10A region (NCBI build 36 positions 38,490,026
- 38,818,967), 654 MetaboChip SNPs were directly genotyped and
passed QC filters (SNP and sample call rate > 90%, concordance
among blind duplicates > 98%, HWE P-value > 0.001, MAF > 0.01)
in ARIC and WHI-PAGE participants. MetaboChip SNPs were im-
puted in WHI-SHARE participants using genome-wide genotype
data (Affymetrix 6.0 SNP array), as previously described (79).
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Gene expression analysis in human atrial tissue

Human left atrial appendage and pulmonary vein trimming
tissues were obtained with written informed consent from 289
European-ancestry and 40 African-ancestry patients undergo-
ing cardiac surgery. Use of discarded surgical tissue was ap-
proved by the Institutional Review Board of the Cleveland
Clinic. Total RNA was extracted using TRIzol. Genome-wide
RNA levels were measured using Illumina HT12 v.3 and v.4 ex-
pression arrays. RNA expression levels were background cor-
rected, log,-transformed, quantile normalized, and batch
adjusted. Genome-wide SNPs were genotyped in these sub-
jects using Illumina Hap550 and Hap610 arrays, and multidi-
mensional scaling (MDS) was performed. SNP association with
RNA levels was determined separately for each racial group
using linear regression with SNPs coded as dosages and addi-
tive adjustment for sex, tissue location, MDS dimensions, and
surrogate variables, which were included to reduce expression
heterogeneity and improve power to detect eQTLs (80). Effect
estimates were expressed on the log,-transformed RNA scale.
Analysis was performed using expression probes detected in
at least 10% of samples within 250kb of the query SNP. Nine
eQTLs were examined: rs3922844 and SCN5A, rs1662342 and
probes in MYL12A, TGIF1 (2 probes), LPIN2 (2 probes), and
MYOM1, and rs7547997 and probes in CD1C and CDIE, and an
eQTL P-value <0.006 (0.05/9) was deemed significant. SCN5A
exonic locations are expressed relative to the longest isoform,
NM_198056.2, which contains 28 exons.

Supplementary Material

Supplementary Material is available at HMG online.
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