38 research outputs found

    Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer : eolian imprint, spatiotemporal variability, and ecological implications

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4006, doi:10.1029/2004GB002445.We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ∼1–2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol m−3), to ∼0.1–0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol m−3). During summer 2003, we observed an increase of ∼0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3–30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02–0.19 nM) coinciding with a deep chlorophyll maximum at 100–150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.Funding for this work was provided by the U.S. National Science Foundation (OCE-0222053 to P. N. S., OCE-0222046 to T. M. C., and OCE-0241310 to D. J. M.), the U.S. National Aeronautics and Space Administration (NAG5-11265 to D. J. M.), the Australian Research Council (DP0342826 to A. R. B.), the Antarctic Climate and Ecosystems Cooperative Research Center, and the H. Unger Vetlesen Foundation

    Pathways and timescales of Southern Ocean hydrothermal iron and manganese transport

    Get PDF
    Scarcity of iron and manganese limits the efficiency of the biological carbon pump over large areas of the Southern Ocean. The importance of hydrothermal vents as a source of these micronutrients to the euphotic zone of the Southern Ocean is debated. Here we present full depth profiles of dissolved and total dissolvable trace metals in the remote eastern Pacific sector of the Southern Ocean (55–60° S, 89.1° W), providing evidence of enrichment of iron and manganese at depths of 2000–4000 m. These enhanced micronutrient concentrations were co-located with 3He enrichment, an indicator of hydrothermal fluid originating from ocean ridges. Modelled water trajectories revealed the understudied South East Pacific Rise and the Pacific Antarctic Ridge as likely source regions. Additionally, the trajectories demonstrate pathways for these Southern Ocean hydrothermal ridge-derived trace metals to reach the Southern Ocean surface mixed layer within two decades, potentially supporting a regular supply of micronutrients to fuel Southern Ocean primary production

    Feasibility and acceptability of a multiple risk factor intervention: The Step Up randomized pilot trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interventions are needed which can successfully modify more than one disease risk factor at a time, but much remains to be learned about the acceptability, feasibility, and effectiveness of multiple risk factor (MRF) interventions. To address these issues and inform future intervention development, we conducted a randomized pilot trial (n = 52). This study was designed to assess the feasibility and acceptability of the Step Up program, a MRF cognitive-behavioral program designed to improve participants' mental and physical well-being by reducing depressive symptoms, promoting smoking cessation, and increasing physical activity.</p> <p>Methods</p> <p>Participants were recruited from a large health care organization and randomized to receive usual care treatment for depression, smoking, and physical activity promotion or the phone-based Step Up counseling program plus usual care. Participants were assessed at baseline, three and six months.</p> <p>Results</p> <p>The intervention was acceptable to participants and feasible to offer within a healthcare system. The pilot also offered important insights into the optimal design of a MRF program. While not powered to detect clinically significant outcomes, changes in target behaviors indicated positive trends at six month follow-up and statistically significant improvement was also observed for depression. Significantly more experimental participants reported a clinically significant improvement (50% reduction) in their baseline depression score at four months (54% vs. 26%, OR = 3.35, 95% CI [1.01- 12.10], <it>p </it>= 0.05) and 6 months (52% vs. 13%, OR = 7.27, 95% CI [1.85 - 37.30], <it>p </it>= 0.004)</p> <p>Conclusions</p> <p>Overall, results suggest the Step Up program warrants additional research, although some program enhancements may be beneficial. Key lessons learned from this research are shared to promote the understanding of others working in this field.</p> <p>Trial registration</p> <p>The trial is registered with ClinicalTrials.gov (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00644995">NCT00644995</a>).</p

    Factors associated with regular physical activity participation among people with severe mental ill health

    Get PDF
    Purpose People with severe mental ill health (SMI) are less physically active and more sedentary than the general population. There is limited research investigating the correlates of physical activity (PA) in people with SMI impeding development of successful interventions. This study aimed to assess the factors associated with regular participation of PA among a large sample of people with SMI. Methods The data for this study were collected from the ‘Lifestyle Health and Wellbeing’ (HWB) cohort that collected data through self-administered questionnaire from participants with SMI. Self-reported participation in regular PA was the main outcome variable. Potential predictors of PA were grouped as demographic, biological, psychological and behavioural variables. Multivariable logistic regressions were conducted considering PA participation as the dependent variable adjusted for possible correlated predictors. Results In total, 3,287 people with SMI (mean (SD) age 47.7 (14.58) years, 59% male) were included; 38% reported undertaking regular PA and 61% wanted to undertake more physical activity. Multivariable logistic regressions showed that the following factors were associated with undertaking more regular PA: being male, aged 18-65 years, having a body mass index between 18.5 and 30 kg/m2, having better self-perceived general health condition, not having a health problem that limits activity, giving higher importance to maintain a healthy lifestyle, and eating more fruit and vegetables. Conclusions Having a better self-perceived general health and placing importance on maintaining a healthy lifestyle were important predictors of regular PA. Lifestyle interventions targeting increased PA among people with SMI should be shaped by their health perception and informed by their needs

    Diretrizes para cessação do tabagismo - 2008

    Full text link

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Validation of a Portable Flow Injection-Chemiluminescence (FI-CL) Method for the Determination of Dissolved Iron in Atlantic Open Ocean and Shelf Waters by Comparison with Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry (ID-ICPMS)

    No full text
    A blind intercomparison exercise was carried out to validate a well-documented, portable flow injection chemiluminescence (FI-CL) method for the determination of iron in seawater. This was done by the analysis of a variety of filtered Atlantic Ocean samples using FI-CL data and a potential primary method of measurement, isotope dilution-inductively coupled plasma mass spectrometry (ID-ICPMS). To investigate the effect of the seawater matrix at various concentrations of iron, samples were collected at various depths (0-200 m) from different water masses (European Continental Shelf, the South Atlantic Ocean) and filtered through both 0.02 and 0.2 µm pore size filters. The exercise was conducted under controlled conditions using the same bottles transported between laboratories to avoid between-bottle inhomogeneity. The results showed good agreement between the two methods (r2 = 0.82) for dissolved iron over the concentration range 0.15-2.1 nM. Some samples were not in agreement within estimated uncertainties and this was attributed to random errors arising from contamination during sample handling and/or matrix effects (i.e. variable interferences) rather than systematic errors.JRC.D.3-Knowledge Transfer and Standards for Securit

    Determination of dissolved iron in seawater: A historical review

    Get PDF
    This paper overviews the evolution of suitable analytical approaches for the determination of dissolved iron in seawater. The focus is on sampling and sample treatment, detection methods and quality assurance of the data. Iron is a vital trace element for the growth of marine organisms and is the limiting micronutrient for primary production in many parts of the world's oceans. The concentration of dissolved iron in seawater therefore influences the past and present day global carbon cycle and consequently Earth's climate. Hence it is important to understand the marine biogeochemistry of iron and quantify the spatial and temporal distribution of the element. In order to do this, it is essential that robust and validated methods with appropriate detection limits, precision and accuracy are available for the determination of iron species in seawater.</p

    Uncertainty associated with the leaching of aerosol filters for the determination of metals in aerosol particulate matter using collision/reaction cell ICP-MS detection

    No full text
    High quality observational data with a firm uncertainty assessment are essential for the proper validation of biogeochemical models for trace metals such as iron. Typically, concentrations of these metals are very low in oceanic waters (nM and sub nM) and ICP-MS is therefore a favoured technique for quantitative analysis. Uncertainties in the measurement step are generally well constrained, even at sub-nM concentrations. However, the measurement step is only part of the overall procedure. For the determination of trace metal solubilities from aerosols in the surface ocean, aerosol collection on a filter paper followed by a leaching procedure is likely to make a significant contribution to the overall uncertainty. This paper quantifies the uncertainties for key trace metals (cobalt, iron, lead and vanadium), together with aluminium as a reference element, for a controlled, flow through laboratory leaching procedure using filters collected from three different sampling sites (Tudor Hill (Bermuda), Heraklion (Crete) and Tel-Shikmona (Israel)) and water, glucuronic acid and desferrioxamine B as leachants. Relative expanded uncertainties were in the range of 12–29% for cobalt, 12–62% for iron, 13–45% for lead and 5–11% for vanadium. Fractional solubilities for iron ranged from 0.2 ± 0.1% to 16.9 ± 3.5%
    corecore