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Abstract 16 
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This paper overviews the evolution of suitable analytical approaches for the determination of 18 

dissolved iron in seawater. The focus is on sampling and sample treatment, detection methods 19 

and quality assurance of the data. Iron is a vital trace element for the growth of marine 20 

organisms and is the limiting micronutrient for primary production in many parts of the world’s 21 

oceans. The concentration of dissolved iron in seawater therefore influences the past and 22 

present day global carbon cycle and consequently Earth’s climate. Hence it is important to 23 

understand the marine biogeochemistry of iron and quantify the spatial and temporal distribution 24 

of the element. In order to do this, it is essential that robust and validated methods with 25 

appropriate detection limits, precision and accuracy are available for the determination of iron 26 

species in seawater. 27 
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1. Iron biogeochemistry 36 

Iron has a relative atomic mass of 55.847 a.m.u. and six known isotopes, of which 54Fe (5.82 37 

%), 56Fe (91.66 %) and 57Fe (2.19 %) are the most abundant (Taylor, 1964). The element has a 38 

high crustal abundance (~5.6 %) and its compounds make up a significant proportion of the 39 

Earth’s rocks and soils but its low solubility dictates that dissolved iron concentrations in oceanic 40 

waters are typically sub-nanomolar (Liu and Millero, 2002). Iron exists predominantly as oxides 41 

and carbonates but forms salts with most inorganic anions in the solid phase. The most 42 

commonly occurring compounds in iron ores, all of which are highly stable, are haematite 43 

(Fe2O3), magnetite (Fe3O4), limonite (2Fe2O3.3H2O), siderite (FeCO3) and pyrite (FeS2) 44 

(Greenwood and Earnshaw, 1984). 45 

 46 

The marine biogeochemistry of iron is influenced by low solubility, redox speciation and the role 47 

that it plays in biological cycles. The major inputs of iron to the oceans are from the atmosphere, 48 

continental shelf sediments, hydrothermal vents, rivers and glacial melt in polar regions. The 49 

main removal pathways are biological uptake, scavenging, precipitation and sedimentation. In 50 

the remote surface waters of the open-ocean (and some enclosed basins) the main source of 51 

iron is atmospheric dust deposition (Jickells and Spokes, 2001; Séguret et al., 2011). A 52 

summary of ambient dissolved iron concentrations in the major reservoirs and annual flux 53 

estimates between the reservoirs is shown in Fig. 1 and an inventory of >13,000 oceanic 54 

dissolved iron measurements can be found in Tagliabue et al. (Tagliabue et al., 2012). Using 55 

the mean off-shelf dissolved iron concentrations (± 1 s.d.) from this inventory for surface (0 – 56 

100 m) and deep (2000 – 6000 m) waters and a total ocean volume of 1.35 x 109 km3 gives 57 

estimates for standing stocks of dissolved iron of 2.34 x 1013 ± 3.40 x 1013 g for surface waters 58 

and 4.08 x 1013 ± 1.97 x 1013 g for deep waters. 59 

 60 

In most oceanic regions, primary production is limited by the availability of light and macro-61 

nutrients (nitrate, phosphate and silicate) but approximately 40 % of the world’s surface waters 62 

are replete with major nutrients but have relatively low phytoplankton biomass (Boyd et al., 63 

2007; Moore et al., 2002). These regions are termed high-nutrient, low chlorophyll (HNLC), the 64 

most important being the Southern Ocean, the Equatorial Pacific and the Subarctic Pacific. The 65 

first reliable iron determinations in an HNLC region were made in the late 1980’s in the Pacific 66 

Ocean as part of the VERTEX programme (Landing and Bruland, 1987; Martin and Gordon, 67 

1988; Martin et al., 1989) using sampling and analytical techniques developed by Bruland et al. 68 

(Bruland et al., 1979). 69 

 70 
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John Martin then published the ‘Iron Hypothesis’ in 1991 (Martin, 1990) based on an inverse 71 

correlation between carbon dioxide and iron (inferred from aluminium data) in Vostok ice cores 72 

linked with glacial and interglacial transitions. Martin proposed that increased Fe input to HNLC 73 

oceanic regions as a result of higher dust loading could stimulate primary production. It was 74 

further proposed that this effect could potentially cause intense drawdown of carbon dioxide, 75 

reduce atmospheric temperatures and hence be an important driver of global climate change. A 76 

recent study using a sediment core from the Subantarctic Atlantic Ocean has shown that during 77 

glacial times an increase in dust flux resulted in higher productivity and nitrate consumption 78 

which is consistent with Subantarctic iron fertilisation (Martinez-Garcia et al., 2014).  79 

 80 

This iron limitation hypothesis has been tested in the under-productive waters of the Equatorial 81 

Pacific (e.g. IronEx; Coale et al., 1996), Subarctic Northeast Pacific (Boyd et al., 2005) and 82 

Southern Ocean (SOIREE; Boyd and Law, 2001) by seeding surface ocean waters with low 83 

concentrations of dissolved iron. These in situ experiments triggered large phytoplankton 84 

blooms that resulted in a significant drawdown of atmospheric carbon dioxide and surface water 85 

nitrate. More recently it has been shown that iron also plays an important role in nutrient cycling 86 

processes such as nitrogen fixation in the North and South Atlantic (Schlosser et al., 2014) and 87 

can limit growth in non-HNLC regions and coastal upwelling areas (Bruland et al., 2001; 88 

Capone and Hutchins, 2013; Chase et al., 2005). These observations highlight the need for 89 

robust conceptual and numerical models of ocean biogeochemistry to include iron as a limiting 90 

component (Moore and Doney, 2007; Tagliabue and Völker, 2011). 91 

 92 

In order to provide accurate measurements of dissolved iron for the modelling community and to 93 

understand the processes that control iron marine biogeochemistry, the species to be 94 

determined must be clearly and operationally defined. Size fractionation is particularly important 95 

due to the broad variety of Fe species thought to exist in seawater, including nanoparticles, 96 

colloidal phases and macromolecules. Historically, dissolved iron has been defined as that 97 

which passes through a 0.45, 0.4 or 0.2 m filter membrane (Cutter et al., 2010; de Baar and de 98 

Jong, 2001), but the development of trace metal clean ultra-filtration techniques (Gobler et al., 99 

2002; Nishioka et al., 2001; Wu et al., 2001) now allows improved characterisation of different 100 

size fractions. For example, the total dissolved (dFe), (truly) soluble (sFe) and colloidal (cFe) 101 

iron pools can be operationally defined by the pore size of the filtration membrane used, i.e. dFe 102 

<0.2 m; sFe <0.02 m; cFe 0.02 - 0.2 m (Ussher et al., 2010a), with the total dissolvable 103 

(TDFe) iron pool being operationally defined as the fraction detected after acidification and long 104 
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term (> 6 months) storage without prior filtration (Ussher et al., 2013). A surface water profile of 105 

sFe, dFe and TDFe in the Atlantic Ocean on the AMT 16 transect is shown in Fig. 2. 106 

 107 

Iron usually has a nutrient-type vertical distribution in open ocean HNLC waters, with depleted 108 

dFe concentrations of < 0.2 nM in surface waters (Boyd and Ellwood, 2010; de Baar and de 109 

Jong, 2001), increasing to 0.4 – 0.7 nM below 500 m. Dissolved (defined as < 0.4 µm) iron 110 

measurements from 354 samples at 30 stations in the North and South Pacific, Southern Ocean 111 

and North Atlantic gave a mean dFe concentration of 0.76 ± 0.25 nmol kg-1 (n = 117) at depths 112 

below 500 m with minimal inter-ocean variability (Johnson et al., 1997) in spite of variable 113 

sources of iron and relatively short residence times in deep waters of ~ 70 – 200 yr. The 114 

presence of strong iron binding organic ligands and/or equilibrium between dissolved and 115 

suspended particulate iron were the most likely controlling factors. In the mixed layer, mean dFe 116 

concentrations were 0.07 ± 0.04 nmol kg-1 (n = 112). More recently a study of > 13,000 global 117 

measurements of dissolved iron found that in shelf waters the mean surface water dFe 118 

concentration was 0.61 ± 1.14nM (n = 382) and in deeper waters was 0.53 ± 0.17 nM (n = 20) 119 

(Tagliabue et al., 2012). Open ocean (off-shelf) data showed a much clearer nutrient/scavenged 120 

element profile, with a surface water dFe minimum of 0.31 ± 0.45 (n = 999) that increased with 121 

depth to 0.54 ± 0.26 nM (n = 301) (Tagliabue et al., 2012). A summary of this dataset is shown 122 

in Fig. 3. Dissolved iron residence times in the upper water column are very short, e.g. ≈ 250 123 

days in the Sargasso Sea (Jickells, 1999), due to biological uptake and physical mixing 124 

processes (Hutchins et al., 1993). 125 

 126 

The concentrations of the different physico-chemical species of iron in seawater are dependent 127 

on the equilibrium between various particulate and dissolved phases (see Fig. 4), the rate of 128 

each of the processes shown and the physical composition and condition of the seawater. 129 

Under most natural conditions, iron is found in the +2 and +3 oxidation states and forms salts 130 

with the majority of common anions. Redox transitions between the two oxidation states are 131 

dependent on pH and electron activity (pE) (Morel and Hering, 1993). In aerated aqueous 132 

solutions at circumneutral pH, the Fe(H2O)6
3+ cation is hydrolysed to form polynuclear oxy-133 

hydroxides. A solubility of ~10-11 M has been reported for iron(III) hydroxide in 0.7 M NaCl (pH 134 

8.1, 25 C) where soluble iron was defined as the fraction which passed through a 0.02 µm filter 135 

(Liu and Millero, 1999) and in seawater (Liu and Millero, 2002).  136 

 137 

The solubility of Fe(II) greatly exceeds that of Fe(III). Under anoxic conditions, Fe(II) can be 138 

found at mM concentrations but under oxic conditions at pH >5 it becomes unstable and 139 



5 

 

oxidizes rapidly. Hence oxic aqueous solutions at seawater pH are predicted to contain 140 

negligible Fe(II) at equilibrium (Stumm and Morgan, 1996) although significant Fe(II) 141 

concentrations can be found near sources such as hydrothermal plumes and in low oxygen 142 

waters (Breitbarth et al., 2010). However, > 99 % of the dissolved iron pool is complexed by 143 

organic iron-binding ligands (siderophores) (Gledhill and Buck, 2012) which means that iron 144 

redox speciation in seawater is strongly linked with the concentrations and physico-chemical 145 

properties of the iron complexes present. Two classes of strong iron binding ligands (L1 and L2) 146 

have been characterised and determined in open ocean seawater, and their complexing ability 147 

is expressed using conditional stability constants (KFe3+L), i.e. KFe3+L = [FeL] / [Fe3+] [L], where 148 

[Fe3+] is the sum of the inorganic Fe(III) species (including hydroxide complexes). A range of 149 

siderophores (generally low molecular mass hydroxamates, ferrioxamines and amphibactins) in 150 

seawater have been identified using mass spectrometric techniques (Boiteau et al., 2013; Mawji 151 

et al., 2008; Mawji et al., 2011; Velasquez et al., 2011). 152 

 153 

2. Sampling and sample treatment 154 

The quality of analytical data for iron concentrations in seawater is dependent on the acquisition 155 

and storage of clean and stable samples and the availability of suitable detection methods. It is 156 

therefore important that well documented protocols that reflect best practice are used for 157 

sample collection and treatment in order to minimise contamination. Open discussion within the 158 

community is also an essential part of this process. A good starting point for reliable sample 159 

collection is the GEOTRACES ‘cookbook’ for micronutrient sampling and sample-handling 160 

(Cutter et al., 2010). This has a specific section (section VI) dealing with sampling and handling 161 

protocols for trace elements, including iron. 162 

 163 

The first step is to ensure that trace metal-clean sampling apparatus and sample collection 164 

bottles are used. For surface water sampling a clean surface pump sipper/tow fish system is 165 

recommended (Cutter et al., 2010) such as the device reported by Vink et al. (Vink et al., 2000). 166 

The key components of any surface sampling system are a clean pump (a PTFE diaphragm 167 

pump is preferred but a peristaltic pump can also be used), clean plastic tubing on all lines and 168 

a tow fish of suitable hydrodynamic design, material and density. 169 

 170 

Several clean sampling systems have been reported for obtaining depth profiles. Since the 171 

earliest reliable design of a discrete sampler for obtaining open ocean depth profiles (Bruland et 172 

al., 1979) various devices and modifications have been reported (Bell et al., 2002; Cutter and 173 

Bruland, 2012; de Baar et al., 2008; Fitzsimmons and Boyle, 2012; Measures et al., 2008; 174 
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Sedwick et al., 2005). Measures et al. described a commercially available rosette-based system 175 

for trace metal-clean sampling (Measures et al., 2008) that was successfully deployed on 176 

several CLIVAR cruises for high-resolution trace element sampling. De Baar et al. described a 177 

fast and ultraclean system for sampling deep ocean waters for trace metals (de Baar et al., 178 

2008) constructed with a titanium frame and having 8000 m of Kevlar wire with internal power 179 

and signal cables. Cutter and Bruland reported a system for the rapid and non-contaminating 180 

sampling of trace elements with volumes of up to 36 L per depth for both dissolved and 181 

particulate phases (Cutter and Bruland, 2012). Based on the use of this system on three major 182 

cruises, the launch-sample-recover time for the carousel (2 bottles triggered per depth) was 1 h 183 

per 1000 m, and dissolved and particulate sampling time averages were 6 h per hydrocast. In 184 

all cases, the collected samples were then handled in a trace metal-clean laboratory on board 185 

the ship, which should conform to ISO Class 5 specifications (ISO, 2010). 186 

 187 

The next step in the process is sample storage, which requires the use of appropriate 188 

containers and rigorous cleaning protocols for those containers. The GEOTRACES cookbook 189 

(Cutter et al., 2010) recommends low density polyethylene (LDPE) or high density polyethylene 190 

(HPDE) bottles for both the total dissolvable (unfiltered) and total dissolved (filtered) fractions for 191 

most trace metal determinations, including iron. Rigorous sample bottle cleaning is essential 192 

and in addition to the recommended protocol in the GEOTRACES guide there are several other 193 

similar and effective strategies (e.g. Achterberg et al., 2001). For the determination of dissolved 194 

iron (< 0.2 µm) it is necessary to filter the sample, for which a cartridge (capsule) type filter, with 195 

0.8/0.2 μm pore sizes, is recommended (Cutter et al., 2010). Polycarbonate membrane filters 196 

have also been successfully used for smaller sample volumes (Bowie et al., 2010). To obtain 197 

the soluble (< 0.02 µm) fraction an ultrafiltration membrane can be used (Schlosser et al., 198 

2013), usually in a cross flow configuration (Schlosser and Croot, 2008). Aluminium oxide 199 

membranes have also been used (Wu et al., 2001). 200 

 201 

For the determination of total dissolved iron, samples should be acidified using concentrated 202 

hydrochloric acid to pH 1.7 - 1.8 (0.024 M) (Johnson et al., 2007). The acid should be as pure 203 

as possible, with acidification blanks collected and analysed on a regular basis, and handling 204 

must conform to the required standards of cleanliness. Acidification can be done at sea or when 205 

samples are returned to the laboratory. For speciation analysis, e.g. the direct determination of 206 

Fe(II), the analysis must be carried out immediately after sampling, and hence on-board ship, 207 

because of its high reactivity. In this case two strategies are to buffer the sample to pH ≤7.2 or 208 

to cool it to 2 – 4 °C (Cutter et al., 2010). 209 
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 210 

3. Analytical methods 211 

One of the earliest reported attempts to determine iron in seawater was in 1935 (Cooper, 1935). 212 

A spectrophotometric method was used, with tripyridyl as the selective reagent; Fe(II), 213 

“reducible” Fe (after treatment with HCl/sulphite) and “total” Fe (after treatment with 214 

HCl/bromine water) were determined on 100 mL volumes of filtered seawater samples. Since 215 

that time both laboratory and shipboard methods have evolved to a remarkable degree and 216 

there are a number of relatively recent overviews of methods for the determination of dissolved 217 

iron in seawater (Achterberg et al., 2001; Bowie and Lohan, 2009; Bruland and Rue, 2001).  218 

 219 

The most common approach used to determine iron in seawater in the late 1970s and 1980s 220 

was preconcentration using solvent extraction (Danielsson et al., 1985; Gordon et al., 1982; 221 

Landing and Bruland, 1987; Spencer et al., 1970) or co-precipitation (Symes and Kester, 1985) 222 

coupled with detection by electrothermal (graphite furnace) atomic absorption spectrometry 223 

(ETAAS). Chelation with ammonium 1-pyrrolidinedithiocarbamate (APDC) and 224 

diethylammonium diethyldithiocarbamate (DDDC), double extraction into chloroform and back-225 

extraction into nitric acid was the most popular solvent extraction approach (Bruland et al., 226 

1979). A detection limit of 50 pM was reported by Landing and Bruland (Landing and Bruland, 227 

1987), with high reagent blanks and contamination during sample handling being the main 228 

challenges at that time. On-line solid phase preconcentration became increasingly popular 229 

during the 1980s and 1990s with Saager et al. reporting a detection limit of 150 pM using 230 

Chelex-100 (Saager et al., 1989). In addition, these approaches typically required 250 mL - 4 L 231 

of sample (Bruland et al., 1979).  232 

 233 

In recent times, high resolution (magnetic sector) ICP-MS has become the preferred atomic 234 

spectrometric method of detection, providing sensitive and time efficient iron determinations 235 

whilst excluding isobaric interferences. Isotope dilution is often used for quantification, either 236 

with co-precipitation or on-line solid phase preconcentration. An attraction of isotope dilution is 237 

that it is an absolute and hence traceable method that does not require external standards or 238 

standard additions. Hence matrix interferences and variations in recovery are not a significant 239 

problem. Magnesium hydroxide co-precipitation (Wu, 2007; Wu and Boyle, 1998) requires 240 

minimal use of reagents and hence gives a very low reagent blank, with reported detection 241 

limits of 50 pM (Wu and Boyle, 1998) and 2 pM (Wu, 2007). On-line solid phase chelation has 242 

reported detection limits of 15 pM with 8-hydroxyquinoline (8-HQ) immobilised on silica gel 243 

(Akatsuka et al., 1992), 21 pM with Toyopearl AF-Chelate-650M (iminodiacetic acid chelating 244 
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group) (Milne et al., 2010), 70 pM with nitrilotriacetic acid (NTA) SuperflowTM resin (Lee et al., 245 

2011) and 14 pM with a “seaFAST” column (co-immobilised ethylenediaminetriacetic acid and 246 

iminodiacetic acid chelating groups immobilised on a hydrophilic methacrylate polymer) 247 

(Lagerstrom et al., 2013).  248 

 249 

Quantitative recoveries can also be obtained using solid phase preconcentration and standard 250 

additions to the seawater matrix without the need for isotope dilution, with reported detection 251 

limits of 640 pM with 8-hydroxyquinoline immobilised on fluorinated metal alkoxide glass (Sohrin 252 

et al., 1998) and 14 pM (Biller and Bruland, 2012) and 2000 pM (Sohrin et al., 2008), both with 253 

the Nobias Chelate PA1 resin (co-immobilised ethylenediaminetriacetic acid and iminodiacetic 254 

acid chelating groups). Millilitre sample volumes are required for ICP-MS, e.g. 12 mL was used 255 

by Milne et al. with isotope dilution (Milne et al., 2010) and 40 mL by Biller and Bruland without 256 

isotope dilution (Biller and Bruland, 2012). These data show the significant improvements that 257 

have been made in recent years with regard to detection limits and sample volumes required for 258 

the determination of dissolved iron in seawater, as well as the greater emphasis on method 259 

validation using reference materials (see section 4 for further details). 260 

 261 

ICP-MS and ETAAS can generate high quality data in a controlled laboratory environment but 262 

there is a requirement for portable methods that can be used at sea, thereby providing rapid 263 

analysis whilst minimising sample treatment and storage. In this context flow injection (FI) 264 

techniques provide an excellent platform for sample handling (Zagatto et al., 2012). There are 265 

two main detection systems used in conjunction with FI for the determination of dissolved iron, 266 

namely chemiluminescence (CL) and spectrophotometry (SP) and typical manifold diagrams 267 

are shown in Fig. 5 (Bowie et al., 2004). With both systems preconcentration of iron onto a 268 

chelating resin is a necessary requirement to concentrate the iron and separate it from the bulk 269 

seawater matrix. The majority of FI techniques use 8-HQ as the functional chelating group 270 

immobilised on a chemically-resistant vinyl polymer resin such as Toyopearl TSK (Landing et 271 

al., 1986). More recent studies have used commercially available chelating resins such as NTA 272 

“Superflow” (Lohan et al., 2005) and Toyopearl AF-Chelate-650 (Hurst and Bruland, 2007), 273 

thereby eliminating the synthesis step involved in using 8-HQ. Due to the speciation of iron, a 274 

key consideration is the pH dependency on the recovery of Fe(III) and Fe(II) on the 275 

preconcentration column. For example, Fe(III) is recovered by 8-HQ at pH 3.0 - 4.2, while at pH 276 

5.2 - 6.0 both Fe(III) and Fe(II) are quantitatively recovered (Obata et al., 1993). Therefore, FI 277 

may also allow the iron redox speciation measurements by careful selection of the pretreatment 278 

pH, reagent conditions and an appreciation of possible interferences (Bowie et al., 2002; 279 
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Hopkinson and Barbeau, 2007; Ussher et al., 2005). For “total” dissolved iron (Fe(II) + Fe(III)) 280 

measurements, either an oxidation step (addition of 10 µM hydrogen peroxide (Lohan et al., 281 

2006) or a reduction step (addition of 100 µM sodium sulfite (Bowie et al., 1998) prior to 282 

preconcentration is required. 283 

 284 

FI-CL methods are based on the catalytic effect of either Fe(II) or Fe(III) ions on the oxidation of 285 

luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) to generate blue luminescence (λmax ~440 286 

nm) which is detected using a photomultiplier tube. FI-CL methods that determine Fe(II) require 287 

acidified samples to be reduced off-line using, e.g., sodium sulphite (e.g. Bowie et al., 1998). 288 

Reduced samples are then buffered in-line to pH 5 using ammonium acetate prior to 289 

preconcentration on a suitable resin such as 8-HQ. Iron(II) ions are eluted from the resin using 290 

HCl (e.g. 0.09 M) and merged with a luminol/carbonate buffer reagent stream. Bowie et al. 291 

achieved a detection limit of 40 pM and 3.2 % RSD (n=5) for 1 nM iron (Bowie et al., 1998). FI-292 

CL methods that determine Fe(III) and total dissolved iron if acidified samples are first oxidised 293 

off-line using hydrogen peroxide (Johnson et al., 2007; Klunder et al., 2011). Acidified, oxidised 294 

samples are buffered in-line to pH 3 with ammonium acetate prior to preconcentration. Iron(III) 295 

ions are eluted from the resin using HCl (e.g. 0.3 M). A 2 m heated coil is required to efficiently 296 

mix the eluted Fe(III) with the luminol/carbonate buffer reagent and hydrogen peroxide streams 297 

prior to detection. A mean blank for this method has been reported as 32 ± 14 pM Fe (n=19) 298 

with a detection limit of 5.7 ± 2.9 pM Fe (n=4) (Klunder et al., 2011).  299 

 300 

FI-SP involves the catalytic oxidation of DPD (N,N-dimethyl-p-phenylenediamine 301 

dihydrochloride) by Fe(III) cycled with hydrogen peroxide (Lohan et al., 2006; Measures et al., 302 

1995). The catalysis increases the sensitivity of this method, as the amount of oxidised DPD is 303 

proportional to the concentration of iron. Hydrogen peroxide (10 µM) is added to the sample to 304 

ensure complete oxidation of iron to Fe(III). In-line buffering of the sample is generally required 305 

and is dependent on the resin used for preconcentration. Iron is eluted from the resin and mixes 306 

with DPD/buffer and hydrogen peroxide, producing coloured semiquinone derivatives, which are 307 

detected spectrophotometrically at 514 nm. The average blank for this method was 60 ± 8 pM 308 

Fe (n=35) with a detection limit of 24 ± 4.9 pM Fe (n=9) (Lohan et al. 2006). SAFe surface 309 

samples gave a mean ± SD value of 0.10 ± 0.009 nM (n=14) and SAFe deep samples 0.93 ± 310 

0.04 nM (n=18), in excellent agreement with the SAFe consensus values of 0.097 ± 0.007 nM 311 

and 0.91 ± 0.17 nM respectively (Lohan et al., 2006). 312 

 313 
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Voltammetric techniques provide an alternative strategy for both the shipboard and laboratory 314 

based determination of dissolved iron in seawater. The preferred variant of the technique is 315 

cathodic stripping voltammetry (CSV) in which an iron-binding ligand is added to the seawater 316 

sample to selectively form a complex with Fe(III). This complex is adsorbed onto the working 317 

electrode, typically a hanging mercury drop, followed by cathodic stripping as the Fe(III) is 318 

reduced. Detection limits are typically 80 – 100 pM (Croot and Johansson, 2000; Gledhill and 319 

van den Berg, 1995). However, to determine total dissolved iron, the seawater sample needs to 320 

be pre-treated to liberate iron from complexes with natural seawater ligands. The technique is 321 

also used to determine the complexation capacity of Fe(III) with natural ligands using a 322 

competitive ligand exchange approach (Buck et al., 2012; Croot and Johansson, 2000; Hassler 323 

et al., 2013; Hawkes et al., 2013; Town and Van Leeuwen, 2005; Wu and Jin, 2009). The most 324 

common ligands used for this purpose are 1-nitroso-2-napthol (NN) (Gledhill and van den Berg, 325 

1995), salicylaldoxime (SA) (Rue and Bruland, 1995), 2-(2-thiazolylazo)-p-cresol (TAC) (Croot 326 

and Johansson, 2000) and dihydroxynaphthalene (DHN) (Obata and Van den Berg, 2001). 327 

 328 

Measurements of the stable isotopes of dissolved iron in seawater may help to answer 329 

important biogeochemical questions (e.g. Lacan et al., 2008). There are four naturally occurring 330 

stable iron isotopes: 54Fe (5.84%), 56Fe (91.76%), 57Fe (2.12%), and 58Fe (0.28%), and isotopic 331 

data are typically reported using a standard δ notation in units of per mil (‰) (deviations in parts 332 

per 1000 relative to a reference ratio), using either 56Fe/54Fe or 57Fe/54Fe ratios (Johnson et al., 333 

2008). The investigation of natural mass-dependent isotopic fractionation of iron has been 334 

boosted by the recent development of multiple-collector inductively coupled plasma mass 335 

spectrometry (MC-ICP-MS; de Jong et al., 2007). Many natural marine processes fractionate 336 

iron isotopes, suggesting great promise for seawater δ56Fe as a new tracer of the pathways, 337 

sources and sinks of iron in the ocean, and how iron is biologically cycled. The largest 338 

fractionation of iron isotopes occur during redox changes (e.g., microbial Fe3+ reduction), as well 339 

as differences in bonding, but these are expressed only in natural environments in which 340 

significant quantities of iron are mobilised and separated. In addition, since iron concentrations 341 

in seawater are very low (< 1 nM), there are significant challenges to separate and purify iron 342 

from seawater without introducing contamination and to accurately determine δ56Fe on the small 343 

quantities of iron extracted (John and Adkins, 2010). Nonetheless, Conway et al. have 344 

simultaneously determined Fe, Zn and Cd stable isotopes (δ56Fe, δ66Zn and δ114Cd) in seawater 345 

using Nobias Chelate PA-1 chelating resin for extraction, followed by purification using anion 346 

exchange chromatography and detection by double spike MC-ICP-MS (Conway et al., 2013a; 347 

Conway et al., 2013b). The method was notable for the use of low sample volumes (only 1 litre) 348 
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and very low blanks compared with previously reported methods. In addition, iron isotopic data 349 

have been used in palaeo-reconstructions of ancient anoxic and early oxygenated marine 350 

environments (Rouxel et al., 2005). 351 

 352 

In situ sensors, as distinct from shipboard techniques, are attractive because they are 353 

potentially low cost, low maintenance and suitable for long term remote deployments. They can 354 

also be interrogated remotely using wireless technologies and microwave transmitters (mobile 355 

phones) (Angove et al., 2011). There are however challenges with regard to long term 356 

stability/calibration, biofouling and sample conditioning, e.g. filtration. Ion-selective electrodes 357 

can now be miniaturised and manufactured as disposable devices (Zuliani and Diamond, 2012) 358 

and although they are suitable for monitoring freshwater systems they are often prone to matrix 359 

interferences in seawater. Optical sensors can potentially overcome these issues and a 360 

fluorescence quenching-based siderophore (parabactin) biosensor has been developed for the 361 

direct measurement of Fe(III) in oceanic waters (Lam et al., 2006). The LOD was 40 pM, with a 362 

reproducibility of 6% RSD (n = 10) for 1000 pM Fe(III) and a 50 – 1000 pM  working range. 363 

 364 

Roy et al. used changes in the infrared spectrum of the iron binding siderophore 365 

desferrioxamine B covalently immobilised on a mesoporous silica film when complexed with 366 

Fe(III) (Roy et al., 2008). The system had a detection limit of ∼50 pM for a 1 L seawater sample 367 

at pH 1.7 and was used to determine dissolved iron in the Subarctic Pacific. The device is 368 

potentially deployable on autonomous research platforms for long term in situ monitoring. 369 

 370 

In situ sensors have great potential for high resolution and low cost spatial and temporal 371 

mapping of dissolved iron (and other species) in seawater, including the remote open-ocean, 372 

but further development is still required, not least in sample presentation and treatment, in order 373 

to ensure reliable, long term operation. 374 

 375 

4. Quality assurance of iron data 376 

Method validation has been defined as “the confirmation by examination and the provision of 377 

objective evidence that the particular requirements for a specific intended use are fulfilled” 378 

(ISO/IEC, 2005). In addition ISO/IEC 2005 states that “the range and accuracy of the values 379 

obtainable from validated methods (e.g. the uncertainty of the results, detection limit, selectivity 380 

of the method, linearity, limit of repeatability and/or reproducibility, robustness against external 381 

influences and/or cross-sensitivity against interference from the matrix of the sample/test object), 382 

as assessed for the intended use, shall be relevant to the customer’s needs.” It also proposes 383 
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five approaches to method validation that can be used individually or in combination: (i) 384 

calibration using reference standards or reference materials, (ii) inter-laboratory comparisons, 385 

(iii) comparison of results achieved with other methods, (iv) systematic assessment of the 386 

factors influencing the results and (v) assessment of the uncertainty of the results based on 387 

scientific understanding of the theoretical principles of the method and practical experience.  388 

 389 

Early inter-laboratory comparisons for trace metals in seawater (Bewers et al., 1981; Landing et 390 

al., 1995) reported inconsistent results with up to one order of magnitude degree of variability in 391 

the quantification of the analytical blank and inaccuracies in system calibration. Two more 392 

recent intercomparison exercises that focussed on the determination of iron (both on board ship 393 

and in the laboratory) were IRONAGES, using Atlantic Ocean samples collected in 2000 (Bowie 394 

et al., 2003; Bowie et al., 2006), and SAFe (Sampling and Analysis of Fe), using Central North 395 

Pacific samples collected in 2004 (Johnson et al., 2006; Johnson et al., 2007). A summary of 396 

the analytical methods used by participating laboratories in the IRONAGES intercomparison 397 

exercise is shown in Table 1. Both of these exercises also produced “in-house” seawater 398 

reference materials with “consensus values” for the concentration of dissolved iron. These were 399 

made available to the marine biogeochemistry community in response to the unavailability of 400 

commercial seawater certified reference materials (CRMs) with suitably low certified 401 

concentrations for iron. As an example of the use of these reference materials, Ussher et al. 402 

compared the results obtained for the IRONAGES sample by FI-CL with isotope dilution ICP-403 

MS and found good agreement over a concentration range of 0.15 - 2.1 nM iron (Ussher et al., 404 

2010b) and any differences were attributed to random effects such as variable contamination 405 

rather than systematic effects. 406 

 407 

The marine biogeochemistry community has now established GEOTRACES 408 

(http://www.geotraces.org/) to facilitate the study of the global marine biogeochemical cycles of 409 

a suite of trace elements and their isotopes (TEIs), including iron (SCOR Working Group, 2007). 410 

GEOTRACES conducted two intercalibration cruises, one in the North Atlantic Ocean at the 411 

BATS (Bermuda Atlantic Time Series) site in 2008 and one at the SAFe site in the oligotrophic 412 

North Pacific in 2009, and collected seawater for the preparation of ‘in-house’ reference 413 

samples at both sites. A summary of the analytical methods used by participating laboratories 414 

during analysis of the North Atlantic GEOTRACES reference sample to determine a consensus 415 

value for dissolved iron in the North Atlantic is shown in Table 2. The ultimate goal for the 416 

intercalibration component of GEOTRACES (Cutter, 2013) is to achieve the best possible 417 

accuracy (lowest random and systematic errors) for these TEIs by evaluating and developing 418 

http://www.geotraces.org/


13 

 

GEOTRACES sample acquisition, handling, and storage protocols (Cutter et al., 2010), 419 

identifying existing GEOTRACES primary standards and certified reference materials (CRMs) 420 

and, where needed, producing suitable reference materials (RMs) or primary standards. 421 

 422 

In the last few years there has been a proliferation of both new methods and new laboratories 423 

reporting dissolved iron concentrations in seawater and rigorous quality assurance is therefore 424 

essential. The most common methods use commercially available chelating resins such as 425 

Nobias Chelate PA1 (e.g. Sohrin et al., 2008) and ICP-MS detection (e.g. Biller and Bruland, 426 

2012; Lagerstrom et al., 2013; Milne et al., 2010). There are also commercially available 427 

preconcentration systems such as “seaFAST” that automate the sample handling steps 428 

(Hathorne et al., 2012; Lagerstrom et al., 2013), which should also improve precision. During 429 

the IRONAGES intercomparison exercise seven different analytical techniques were used 430 

(Bowie et al., 2006) whereas eighteen different methods have been used to date in the 431 

GEOTRACES programme to produce consensus values for dissolved iron in surface (GS) and 432 

deep (GD) seawater RMs 433 

 http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html. These RMs are 434 

available free of charge and allow laboratories to assess the accuracy and precision of their 435 

measurements and also facilitate the development of new analytical methods.  436 

 437 

All of these intercalibration efforts have greatly improved the accuracy of dissolved iron 438 

measurements in seawater. This has enabled international programmes such as CLIVAR and 439 

GEOTRACES that engage in ocean basin scale mapping of dissolved iron concentrations to 440 

ensure that temporally and spatially variable data from different cruises, obtained by different 441 

researchers using different analytical methods, can be reliably intercompared. A key aspect of 442 

the sampling strategy is the use of cross-over stations whereby two or more cruises carrying out 443 

ocean scale mapping have at least one common station where they determine the 444 

concentration of dissolved iron, often using different sampling systems and, in some cases, 445 

different analytical techniques. Both sample concentrations and RM consensus values are 446 

compared to ensure that acceptable intercalibration is achieved. Deep water values are 447 

preferred because surface waters values are impacted by seasonal changes in productivity and 448 

inputs from atmospheric sources. The GEOTRACES programme has recently released an 449 

intermediate data product and an atlas of dissolved Fe measurements in seawater 450 

(http://www.egeotraces.org/) which is enabling a paradigm shift in our understanding of iron 451 

cycling in seawater. An example of the data product showing a screen shot of an animated 3D 452 

scene of reported dFe concentrations in the Atlantic Ocean is given in Fig. 6. 453 

http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html
http://www.egeotraces.org/


14 

 

 454 

Uncertainty is one aspect of method validation and can be defined as the ‘parameter, 455 

associated with the result of a measurement that characterises the dispersion of the values that 456 

could reasonably be attributed to the measurand’ (JCGM, 2012). A simple statistical procedure 457 

is often used by chemical oceanographers to estimate the uncertainty of a measurement result, 458 

e.g. the internal instrumental precision obtained for analysis of a single sample is calculated to 459 

give the range within which the stated result is likely to lie. However, this may underestimate the 460 

uncertainty of a measurement, leading to over-interpretation of the significance of the result. 461 

Evaluation of uncertainty is more reliably done using a mathematical model coupled with some 462 

numerical method of differentiation that combines the individual uncertainties associated with 463 

each model parameter, i.e. each of the steps in the sample collection, pre-treatment, storage 464 

and measurement processes (Worsfold et al., 2013). Prior knowledge of the major sources of 465 

input to the measurement results, and their associated uncertainties, will indicate where to focus 466 

efforts to meet the target uncertainty. Further details of the approach can be found in “The 467 

Guide for Uncertainty in Measurements”, often abbreviated to “the GUM”, (JCGM, 2008) and, 468 

more specifically, in the Eurachem/CITAC Guide “Quantifying Uncertainty in Analytical 469 

Measurement” (Ellison and Williams, 2012).  470 

 471 

5. Future perspectives 472 

With regard to sampling, there are developments in autonomous samplers, gliders, buoys and 473 

Argo floats that offer great potential for the acquisition of long term time series samples, higher 474 

sampling frequency, greater spatial coverage and regular access to more remote locations. 475 

More use could also be made of ships (and submarines) of opportunity. However deployment of 476 

these devices needs to be accompanied by improved sample treatment at the point of collection 477 

and/or coupling with in situ measurement technologies. At present, laboratories are collecting 478 

samples at a faster rate than their capacity to analyse them. 479 

 480 

There is also a need for new measurement technologies, with the emphasis on fast, selective 481 

methods with good accuracy and precision that need minimal sample treatment or can be used 482 

directly, i.e. in situ sensors. This requires greater collaboration between the Analytical 483 

Chemistry and Chemical Oceanography communities, supported by meetings such as that 484 

hosted in Hawaii in 2013 (COCA Working Group, 2013). It also requires community wide 485 

protocols for assessing and reporting data and for estimating uncertainty. 486 

 487 
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From a biogeochemistry perspective the same rigorous approach to sampling, analysis and 488 

data treatment needs to be applied to the determination of particulate iron (Cutter et al., 2010) 489 

and aerosol derived iron (Morton et al., 2013) and the GEOTRACES community is at present 490 

focussing on the intercalibration of these two important measurements. Methods for the 491 

determination of iron speciation also need to be critically evaluated and stable reference 492 

materials for speciation studies developed. 493 

 494 
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Table 1. Analytical methods used during the IRONAGES iron intercomparison (Bowie et al., 2006). 

Acronym Summary Reference(s) 

CSV-DHN Competitive ligand equilibration - cathodic stripping voltammetry 

(ligand: 2,3-dihydroxynaphthalene) 

(Obata and Van den Berg, 

2001) 

FI-CL Fe(II) Flow injection – luminol chemiluminescence (using dissolved O2, 

sulfite reduction to FeII); preconcentration on 8HQ resin 

(Bowie et al., 1998; King et 

al., 1995)  

FI-CL Fe(III) Flow injection - luminol chemiluminescence (using H2O2, natural 

oxidation to FeIII); preconcentration on 8HQ resin 

(de Jong et al., 1998; Obata 

et al., 1993)  

FI-SP Flow injection - catalytic spectrophotometry (reagent: N,N-

dimethyl-p-phenylenediamine dihydrochloride); preconcentration 

on 8HQ resin 

(Measures et al., 1995) 

ID-ICP-MS Mg(OH)2 co-precipitation, isotope dilution - inductively coupled 

plasma mass spectrometry 

(Wu and Boyle, 1998) 

SE-ETAAS Chelation solvent extraction - electrothermal atomic absorption 

spectrometry (ligand: APDC/DDDC) 

(Bruland et al., 1979) 

SPE-ICP-MS Solid phase extraction - inductively coupled plasma mass 

spectrometry (ligand: bis(2-hydroxyethyl) dithiocarbamate, C18 

column) 

(Fujishima et al., 2001; 

Wells and Bruland, 1998) 

 

  



17 

 

Table 2. Analytical methods used during the analysis of the North Atlantic GEOTRACES reference sample to determine a consensus value for 

dissolved iron (adapted from http://es.ucsc.edu/~kbruland/GeotracesSaFe/2012GeotracesSAFeValues/GEOTRACES_Ref_Fe.pdf). 

 

Acronym  Summary Reference(s) 

    

ID-ICP-MS  Concentrated off-line with the Mg(OH)2 co-precipitation method and analysed by 

isotope dilution ICP-MS. Blanks were quantified using 50 µL of sample instead of 1.6 

mL. A single co-precipitation step was carried out followed by dilution of the precipitate 

with 4% HNO3. 

(Wu and Boyle, 

2002) 

ID-ICP-MS  Double co-precipitation with Mg(OH)2 and isotope dilution ICP-MS. (Wu, 2007) 

FI-SP  Flow injection using the NTA-type resin and DPD catalytic enhancement of the UV-

visible absorption signal. 

(Lohan et al., 

2006) 

SPE-ICP-MS  Off line concentration using an EDTriA-type chelating resin with subsequent analyses 

by ICP-MS. 

(Sohrin et al., 

2008) 

SE-ICP-MS  Concentrated by solvent extraction and analysed by ICP-MS. 100 g seawater samples 

were buffered to a pH of 4.5 with purified ammonium acetate buffer. Purified 

ammonium pyrrolidinedithiocarbamate (PDC) and sodium diethyldithiocarbamate 

(DDC) were added to the samples which were then extracted twice by shaking 

following the addition of purified chloroform. The two chloroform extracts obtained were 

combined, acidified with nitric acid, shaken for 1 min and then diluted with purified 

water. 

(Bruland et al., 

1979) 

SE-ETAAS  300–500 g portions of the samples were subjected to a dithiocarbamate–freon (Danielsson et 

http://es.ucsc.edu/~kbruland/GeotracesSaFe/2012GeotracesSAFeValues/GEOTRACES_Ref_Fe.pdf
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extraction modified from the procedure by implying maximum concentration factors of 

500. The final extracts with the metals were measured by electrothermal atomic 

absorption spectrometry with Zeeman background correction (ETAAS; Perkin-Elmer 

Model 4100 ZL). 

al., 1978; 

Kremling and 

Streu, 2001) 

SPE-ICP-MS  Off-line concentrations using an EDTri-A-type chelating resin with subsequent analyses 

by ICP-MS. The method entailed an eight column manifold enabling eight separate 40 

mL samples. 

(Biller and 

Bruland, 2012; 

Sohrin et al., 

2008) 

ID-ICP-MS  Off-line extraction using IDA Toyopearl AF-Chelate-650 M resin followed by analysis 

using isotope dilution ICP-MS Prior to extraction the samples (12 mL) were buffered to 

pH ~6.2. 

(Milne et al., 

2010) 

SPE-ICP-MS  On-line flow injection analysis of 4 mL of sea water using an EDTA-type chelating resin 

at pH 6 utilising purified ammonium acetate buffer and eluting analytes with 1.5 M 

HNO3 followed by detection with ICP-MS. 

(Sohrin et al., 

2008) 

FI-CL  Flow Injection with chemiluminescence detection.  

ID-ICP-MS  100-bead NTA resin separation on small samples together with isotope dilution and 

ICP-MS detection. 

(Lee et al., 

2011) 

FI-CL  Flow injection analysis with chemiluminescence detection. (Sedwick et al., 

2008) 

FI-CL Fe(II)  Flow injection analysis with the Fe(II) luminol chemiluminescence method using sulfite 

reduction and NTA resin preconcentration. 

(King and 

Barbeau, 2007) 

CSV  Adsorptive cathodic stripping voltammetry of UV oxidised samples. (Rue and 
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Bruland, 1995) 

ETAAS  The final extracts were measured by electrothermal atomic absorption spectrometry. (Kremling and 

Streu, 2001) 

FI-CL  Flow Injection with chemiluminescence detection using IDA Toyopearl AF-Chelate-650 

M resin. 

 

(Klunder et al., 

2011) 

ID-ICP-MS  Off-line batch preconcentration of 50 mL of acidified sample with NTA-type resin and 

analysed by isotope dilution MC-ICP-MS on a Nu Plasma instrument. Iron was 

analysed in low-resolution mode with a desolvating sample introduction system (Cetac 

Aridus 2). Concentrations calculated using the ratios between 57Fe or 56Fe and the 

added 54Fe spike were internally consistent. 

(de Jong et al., 

2008) 

ID-ICP-MS  On-line flow injection with a modified seaFAST system, the Nobias PA-1 resin, isotope 

dilution and ICP-MS detection. 

 

ID-ICP-MS  Off-line extraction with Nobias PA-1 chelating resin and analysis on an Element XR 

ICP-MS. 

 

SPE-ICP-MS  Off-line extraction using a WAKO chelating resin followed by analysis on an Element 

XR ICP-MS. Samples were UV digested for 3 h. 

 

(Kagaya et al., 

2009) 

ID-ICP-MS  NTA resin bead preconcentration and MC-ICP-MS detection. (Lee et al., 

2011) 
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Figure captions 

 

Figure 1 

Approximations for annual global fluxes of dissolved iron (dFe) to the surface ocean (values are 

reported in or calculated from Bewers and Yeats, 1977; Chester and Jickells, 2012; Stallard and 

Edmond, 1983; Tagliabue et al., 2014). Riverine flux is estimated on the basis of 90% loss from 

estuarine mixing (Boyle et al., 1977). The sinking particulate flux (including scavenging) 

assumes a steady state and no other significant sinks. 

 

Figure 2 

Surface water iron size speciation profiles for the Atlantic Ocean on the Atlantic Meridional 

Transect (for AMT16), 20th May – 28th June 2005 showing soluble iron (sFe, <0.02 μm), 

dissolved iron (dFe, <0.2 μm), and total dissolvable iron (TDFe, unfiltered seawater). 

Reproduced with the permission of the authors from “Impact of atmospheric deposition on the 

contrasting iron biogeochemistry of the North and South Atlantic Ocean”, S. J. Ussher et al., 

Global Biogeochemical Cycles, 27 (2013) 1, doi: 10.1002/gbc.20056 (Ussher et al., 2013). The 

inset shows the cruise track for AMT16. 

 

Figure 3 

Box and whisker plots of dFe by (a) region and (b) basin. The size of the box represents the 1st 

to 3rd quartiles, with the vertical bar corresponding to the median and the whiskers representing 

1.5 times the inter-quartile range. Reproduced with the permission of the authors from “A global 

compilation of dissolved iron measurements: Focus on distributions and processes in the 

Southern Ocean”, Tagliabue et al., Biogeosciences, 9 (2012), doi: 2333 

10.1029/2003GL017721 (Tagliabue et al., 2012). 

 

Figure 4 

Phase transfers of iron and related processes in seawater. This figure was originally published 

by CSIRO Publishing in Environmental Chemistry 1, 67-80. doi: 10.1071/EN04053 

http://www.publish.csiro.au/paper/EN04053.htm and is reproduced with their permission 

(Ussher et al., 2004). 

 

Figure 5 

Two flow injection manifolds for the determination of dissolved iron in seawater: (A) with 

chemiluminescence detection (FI-CL), and (B) with spectrophotometric detection (FI-SP). 

http://www.publish.csiro.au/paper/EN04053.htm
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Reproduced with permission from A.R. Bowie, P.N. Sedwick and P.J. Worsfold, Limnology and 

Oceanography: Methods (Association for the Sciences of Limnology & Oceanography), 2004, 2, 

“Analytical intercomparison between flow injection – chemiluminescence and flow injection-

spectrophotometry for the determination of picomolar concentrations of iron in seawater”, p 45. 

Copyright 2014 by the Association for the Sciences of Limnology and Oceanography, Inc. 

(Bowie et al., 2004). 

 

Figure 6 

Screen shot of the GEOTRACES animated 3D scene of reported dFe concentrations in the 

Atlantic Ocean. Reproduced with permission from Schlitzer, R., eGEOTRACES - Electronic 

Atlas of GEOTRACES Sections and Animated 3D Scenes, http://www.egeotraces.org, 2014. 

Original data supplied by Andrew Bowie, Ken Bruland, Tim Conway, Hein de Baar, Fanny 

Chever, Seth John, Maarten Klunder, Patrik Laan, Francois Lacan, Rob Middag, Abigail Noble, 

Micha Rijkenberg, Mak Saito, Geraldine Sarthou, Peter Sedwick and Jingfeng Wu (Schlitzer, 

2014). 

 

  

https://webmail.plymouth.ac.uk/owa/redir.aspx?C=8p7vyLMc-kGpZnO1qDVALDmUlWDSRNEIiqVlugFSYl1eULvGGRK-XMGPMK7syQ5mAOaZC7XXGD0.&URL=http%3a%2f%2fwww.egeotraces.org
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