208 research outputs found

    Interactions multisensorielles chez les musiciens

    Full text link
    Jouer un instrument de musique demande l’interaction des informations provenant de multiples sens. Cette expérience sensorielle a des effets sur les réseaux corticaux et sur les habiletés comportementales chez les musiciens professionnels qui pratiquent pour plusieurs années. L’entrainement musical semble avoir un effet sur les sens, incluant le toucher, mais peu de recherches se sont penchées sur les habiletés tactiles chez les musiciens. L’objectif de cette thèse est d’évaluer les capacités tactiles unisensorielles et multisensorielles non musicales chez les musiciens à l’aide de méthodologies comportementales. La première étude avait pour objectif d’évaluer les temps de réaction auditifs, tactiles, et audiotactiles chez les musiciens. Les temps de réaction de 16 musiciens et 19 membres d’un groupe témoin ont été évalués. Les résultats de cette recherche suggèrent que les musiciens ont des temps de réaction significativement plus rapide pour des stimulations auditives, tactiles, et audiotactiles. La seconde étude avait comme objectif d’évaluer l’interaction d’informations audiotactiles temporelle et spectrale chez les musiciens. Les interactions audiotactiles de 13 musiciens et de 17 membres d’un groupe témoin ont été évaluées à l’aide d’illusions multisensorielles. Les résultats de cette recherche suggèrent que seulement l’interaction audiotactile temporelle est significative différente entre les groupes. La troisième étude avait pour objectif d’évaluer la localisation spatiale tactile chez les musiciens. La localisation spatiale tactile chez 17 musiciens et 20 membres d’un groupe témoin a été évaluée à l’aide de tâche de jugement d’ordre temporel tactile. Les résultats de cette recherche suggèrent que les musiciens ont un taux d’erreur plus élevé pour localiser des stimulations tactiles quand leurs bras sont croisés, mais qu’ils ont des temps de réaction plus rapides pour cette tâche. Généralement, les résultats de ces recherches suggèrent qu’un entrainement musical à long terme améliore les capacités tactiles unisensorielles et multisensorielles, mais seulement pour certaines tâches. D’autres études sont requises afin de mieux comprendre les facteurs de l’entrainement musical menant à ces changements.Playing a musical instrument requires the integration of information from multiple senses. The long-term sensory training from playing a musical instrument for many years has effects on cortical networks and behavioral abilities. Touch is a sensory modality that seems to be altered by musical training, but little research has focused on the tactile abilities of musicians. The objective of this thesis is to assess non-musical unisensory and multisensory tactile abilities in musicians using behavioral methodologies. The first study aimed at evaluating simple auditory, tactile, and audiotactile reaction times in musicians. Reaction times of 16 musicians and 19 controls were evaluated. The results of this study suggest that musicians have significantly faster response times for auditory, tactile, and audiotactile stimulations. The second study aimed at evaluating the integration of temporal and spectral audiotactile information in musicians. Audiotactile interactions of 13 musicians and 17 controls were evaluated using multisensory illusions. The results of this research suggest that only temporal audiotactile interactions are different for musicians. The third study aimed at assessing temporal tactile localization in musicians using tactile temporal order judgement task. Temporal tactile localization was evaluated in 17 musicians and 20 members of a control group. The results of this study suggest that musicians have a higher error rate to localize tactile stimulations when their arms are crossed but generally have faster reaction times for this task. All of these results suggest that musicians have altered tactile abilities. Overall, these results suggest that long-term musical training alters specific unisensory and multisensory tactile abilities. Further studies are required to better understand the factors of musical training leading to these changes and why certain interactions remain unchanged

    Audiotactile interaction can change over time in cochlear implant users

    Get PDF
    Recent results suggest that audiotactile interactions are disturbed in cochlear implant (CI) users. However, further exploration regarding the factors responsible for such abnormal sensory processing is still required. Considering the temporal nature of a previously used multisensory task, it remains unclear whether any aberrant results were caused by the specificity of the interaction studied or rather if it reflects an overall abnormal interaction. Moreover, although duration of experience with a CI has often been linked with the recovery of auditory functions, its impact on multisensory performance remains uncertain. In the present study, we used the parchment-skin illusion, a robust illustration of sound-biased perception of touch based on changes in auditory frequencies, to investigate the specificities of audiotactile interactions in CI users. Whereas individuals with relatively little experience with the CI performed similarly to the control group, experienced CI users showed a significantly greater illusory percept. The overall results suggest that despite being able to ignore auditory distractors in a temporal audiotactile task, CI users develop to become greatly influenced by auditory input in a spectral audiotactile task. When considered with the existing body of research, these results confirm that normal sensory interaction processing can be compromised in CI users

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly

    Full text link
    The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 380 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively 'trivial' aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic

    Small intestinal mucosa expression of putative chaperone fls485

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. <it>fls485 </it>coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze <it>fls48</it>5 expression in human small intestinal mucosa.</p> <p>Methods</p> <p><it>fls485 </it>expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several <it>in situ </it>techniques and usage of newly synthesized mouse monoclonal antibodies.</p> <p>Results</p> <p>fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c.</p> <p>Conclusions</p> <p>Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.</p

    GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION

    Get PDF
    Protoplanetary disks are believed to accrete onto their central T Tauri star because of magnetic stresses. Recently published shearing box simulations indicate that Ohmic resistivity, ambipolar diffusion and the Hall effect all play important roles in disk evolution. In the presence of a vertical magnetic field, the disk remains laminar between 1-5au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. Questions remain, however, about the establishment of a true physical wind solution in the shearing box simulations because of the symmetries inherent in the local approximation. We present global MHD simulations of protoplanetary disks that include Ohmic resistivity and ambipolar diffusion, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. Our results show that the disk remains laminar, and that a physical wind solution arises naturally in global disk models. The wind is sufficiently efficient to explain the observed accretion rates. Furthermore, the ionization fraction at intermediate disk heights is large enough for magneto-rotational channel modes to grow and subsequently develop into belts of horizontal field. Depending on the ionization fraction, these can remain quasi-global, or break-up into discrete islands of coherent field polarity. The disk models we present here show a dramatic departure from our earlier models including Ohmic resistivity only. It will be important to examine how the Hall effect modifies the evolution, and to explore the influence this has on the observational appearance of such systems, and on planet formation and migration.Comment: 18 pages, 12 figures, accepted for publication in Ap
    corecore