758 research outputs found

    Stokesian jellyfish: Viscous locomotion of bilayer vesicles

    Full text link
    Motivated by recent advances in vesicle engineering, we consider theoretically the locomotion of shape-changing bilayer vesicles at low Reynolds number. By modulating their volume and membrane composition, the vesicles can be made to change shape quasi-statically in thermal equilibrium. When the control parameters are tuned appropriately to yield periodic shape changes which are not time-reversible, the result is a net swimming motion over one cycle of shape deformation. For two classical vesicle models (spontaneous curvature and bilayer coupling), we determine numerically the sequence of vesicle shapes through an enthalpy minimization, as well as the fluid-body interactions by solving a boundary integral formulation of the Stokes equations. For both models, net locomotion can be obtained either by continuously modulating fore-aft asymmetric vesicle shapes, or by crossing a continuous shape-transition region and alternating between fore-aft asymmetric and fore-aft symmetric shapes. The obtained hydrodynamic efficiencies are similar to that of other low Reynolds number biological swimmers, and suggest that shape-changing vesicles might provide an alternative to flagella-based synthetic microswimmers

    Bacillus anthracis edema factor substrate specificity: evidence for new modes of action

    Get PDF
    Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Performance of supply chain collaboration – A simulation study

    Get PDF
    In the past few decades several supply chain management initiatives such as Vendor Managed Inventory, Continuous Replenishment and Collaborative Planning Forecasting and Replenishment (CPFR) have been proposed in literature to improve the performance of supply chains. But, identifying the benefits of collaboration is still a big challenge for many supply chains. Confusion around the optimum number of partners, investment in collaboration and duration of partnership are some of the barriers of healthy collaborative arrangements. To evolve competitive supply chain collaboration (SCC), all SC processes need to be assessed from time to time for evaluating the performance. In a growing field, performance measurement is highly indispensable in order to make continuous improvement; in a new field, it is equally important to check the performance to test conduciveness of SCC. In this research, collaborative performance measurement will act as a testing tool to identify conducive environment to collaborate, by the way of pinpointing areas requiring improvements before initializing collaboration. We use actual industrial data and simulation to help managerial decision-making on the number of collaborating partners, the level of investments and the involvement in supply chain processes. This approach will help the supply chains to obtain maximum benefit of collaborative relationships. The use of simulation for understanding the performance of SCC is relatively a new approach and this can be used by companies that are interested in collaboration without having to invest a huge sum of money in establishing the actual collaboration

    Lead-free piezoceramics - Where to move on?

    Get PDF
    Lead-free piezoceramics aiming at replacing the market-dominant lead-based ones have been extensively searched for more than a decade worldwide. Some noteworthy outcomes such as the advent of commercial products for certain applications have been reported, but the goal, i.e., the invention of a lead-free piezocermic, the performance of which is equivalent or even superior to that of PZT-based piezoceramics, does not seem to be fulfilled yet. Nevertheless, the academic effort already seems to be culminated, waiting for a guideline to a future research direction. We believe that a driving force for a restoration of this research field needs to be found elsewhere, for example, intimate collaborations with related industries. For this to be effectively realized, it would be helpful for academic side to understand the interests and demands of the industry side as well as to provide the industry with new scientific insights that would eventually lead to new applications. Therefore, this review covers some of the issues that are to be studied further and deeper, so-to-speak, lessons from the history of piezoceramics, and some technical issues that could be useful in better understanding the industry demands. As well, the efforts made in the industry side will be briefly introduced for the academic people to catch up with the recent trends and to be guided for setting up their future research direction effectively.ope

    Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells

    Get PDF
    Background and Aims: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV‐specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity‐enhanced T Cell receptor with an anti‐CD3 T Cell‐activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus‐derived peptides presented by human leukocyte antigen (HLA). Approach and Results: ImmTAV molecules specific for HLA‐A*02:01‐restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV‐Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging‐based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV‐Env can redirect T cells from healthy and HBV‐infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV‐Env redirection of T cells induced cytolysis of antigen‐positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. Conclusions: The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non‐HBV‐specific T cells, bypassing exhausted HBV‐specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials

    Extragonadal Effects of Follicle-Stimulating Hormone on Osteoporosis and Cardiovascular Disease in Women during Menopausal Transition

    Get PDF
    The risk of osteoporosis and cardiovascular disease increases significantly in postmenopausal women. Until recently, the underlying mechanisms have been primarily attributed to estrogen decline following menopause. However, follicle-stimulating hormone (FSH) levels rise sharply during menopausal transition and are maintained at elevated levels for many years. FSH receptor has been detected in various extragonadal sites, including osteoclasts and endothelial cells. Recent advances suggest FSH may contribute to postmenopausal osteoporosis and cardiovascular disease. Here, we review the key actions through which FSH contributes to the risk of osteoporosis and cardiovascular disease in women as they transition through menopause. Advancing our understanding of the precise mechanisms through which FSH promotes osteoporosis and cardiovascular disease may provide new opportunities for improving health-span for postmenopausal women

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore