4,223 research outputs found

    NJL model of homogeneous neutral quark matter: Pseudoscalar diquark condensates revisited

    Full text link
    We use a Nambu-Jona Lasinio type model to investigate the phase diagram of dense quark matter under neutron star conditions in mean field approximation. The model contains selfconsistently determined quark masses and allows for diquark condensation in the scalar as well as in the pseudoscalar channel. The latter gives rise to the possibility of K^0 condensation in the CFL phase. In agreement with earlier studies we find that this CFLK^0 phase covers large regions of the phase diagram and that the predominant part of this phase is fully gapped. We show, however, that there exists a region at very low temperatures where the CFLK^0 solutions become gapless, possibly indicating an instability towards anisotropic or inhomogeneous phases. The physical significance of solutions with pseudoscalar diquark condensates in the 2SC phase is discussed as well.Comment: 16 pages, 12 figures; v2: minor modifications, version accepted for publication in PR

    Role of two-flavor color superconductor pairing in a three-flavor Nambu--Jona-Lasinio model with axial anomaly

    Full text link
    The phase diagram of strongly interacting matter is studied within a three-flavor Nambu--Jona-Lasinio model, which contains the coupling between chiral and diquark condensates through the axial anomaly. Our results show that it is essential to include the 2SC phase in the analysis. While this is expected for realistic strange quark masses, we find that even for equal up, down, and strange bare quark masses, 2SC pairing can be favored due to spontaneous flavor-symmetry breaking by the axial anomaly. This can lead to a rich phase structure, including BCS- and BEC-like 2SC and CFL phases and new endpoints. On the other hand, the low-temperature critical endpoint, which was found earlier in the same model without 2SC pairing, is almost removed from the phase diagram and cannot be reached from the low-density chirally broken phase without crossing a preceding first-order phase boundary. For physical quark masses no additional critical endpoint is found.Comment: 12 pages, 10 figures, added appendix clarifying the relation to Ginzburg-Landau results, to appear in PR

    The CP-Violating 2HDM in Light of a Strong First Order Electroweak Phase Transition and Implications for Higgs Pair Production

    Get PDF
    We investigate the strength of the electroweak phase transition (EWPT) within the CP-violating 2-Higgs-Doublet Model (C2HDM). By applying a renormalisation scheme which allows efficient scans of the C2HDM parameter space, we analyse the possibility of a strong first order EWPT required for baryogenesis and study its phenomenological implications for the LHC. Like in the CP-conserving (real) 2HDM (R2HDM) we find that a strong EWPT favours mass gaps between the non-SM-like Higgs bosons. These lead to prominent final states comprised of gauge+Higgs bosons or pairs of Higgs bosons. In contrast to the R2HDM, the CP-mixing of the C2HDM also favours approximately mass degenerate spectra with dominant decays into SM particles. The requirement of a strong EWPT further allows us to distinguish the C2HDM from the R2HDM using the signal strengths of the SM-like Higgs boson. We additionally find that a strong EWPT requires an enhancement of the SM-like trilinear Higgs coupling at next-to-leading order (NLO) by up to a factor of 2.4 compared to the NLO SM coupling, establishing another link between cosmology and collider phenomenology. We provide several C2HDM benchmark scenarios compatible with a strong EWPT and all experimental and theoretical constraints. We include the dominant branching ratios of the non-SM-like Higgs bosons as well as the Higgs pair production cross section of the SM-like Higgs boson for every benchmark point. The pair production cross sections can be substantially enhanced compared to the SM and could be observable at the high-luminosity LHC, allowing access to the trilinear Higgs couplings

    WHO analgesic ladder gone astray: wider implications

    Get PDF
    No abstract available

    Showcasing HH production: Benchmarks for the (HL-)LHC

    Get PDF
    Current projections suggest that the LHC will have only limited sensitivity to di-Higgs production in the Standard Model (SM), possibly even after the completion of its high luminosity phase. Multi-Higgs final states play a fundamental role in many extensions of the SM as they are intrinsically sensitive to modifications of the Higgs sector. Therefore, any new observation in multi-Higgs final states could be linked to a range of beyond the SM (BSM) phenomena that are not sufficiently addressed by the SM. Extensions of the Higgs sector typically lead to new phenomenological signatures in multi-Higgs final states that are vastly different from the SM expectation. In this work, we provide a range of signature-driven benchmark points for resonant and non-resonant BSM di-Higgs production that motivate non-SM kinematic correlations and multi-fermion discovery channels. Relying on theoretically well-motivated assumptions, special attention is devoted to the particular case where the presence of new physics will dominantly manifest itself in multi-Higgs final states

    Radiation Information from 1958 δ2

    Get PDF
    The telemetered radiation information from the satellite 1958 δ2 (Sputnik III) has been analyzed for sixty-two separate passes recorded in College, Alaska. The data indicate a dependence of radiation intensity on altitude in the range 250-500 km. Both the high and low energy components apparently contribute to the overall increase of intensity with altitude, but the presence of a continuous afterglow in the scintillating crystal prevented detailed interpretation of the results.IGY Project No. 32.42 NSF Grant No. Y/32.42/268Ye

    High scale impact in alignment and decoupling in two-Higgs doublet models

    Get PDF
    The two-Higgs doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work we discuss how the behaviour of the model at high energy scales causes it to have a scalar with properties very similar to those of the SM -- which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with BB-physics bounds, forces the model to be naturally decoupled. As a consequence, any non-decoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that not only a 2HDM where the lightest of the CP-even scalars is the 125 GeV one does not require new physics to be stable up to the Planck scale but this is also true when the heavy CP-even Higgs is the 125 GeV and the theory has no decoupling limit for the type I model.Comment: 28 pages, 19 figure

    Estimated absorption of 136 mc/s satellite radio signals Interim technical report no. 1

    Get PDF
    Auroral, polar cap, and sudden cosmic noise absorption estimates for 136 mc/s satellite radio signa
    • …
    corecore