28 research outputs found

    A global spectral library to characterize the world's soil

    Get PDF
    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Move acceptance in local search metaheuristics for cross-domain search

    Get PDF
    Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on `more general' search methods referred to as cross-domain search methods, or hyperheuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of singlepoint based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain

    Determinants of microvascular function in individuals with and without type 2 diabetes: a population-based approach

    Get PDF
    Microvascular dysfunction (impaired functioning of the small blood vessels in the body) is associated with conditions such as heart failure, stroke, cognitive impairment and depression. This dissertation is part of the Maastricht Study and examines the risk factors of microvascular dysfunction in people with and without diabetes. Elevated blood sugar levels, even in people with prediabetes, and ageing are associated with ocular and dermal microvascular dysfunction. Male gender and smoking are associated with dermal microvascular dysfunction. Early and extensive monitoring of elevated blood sugar levels and microvascular dysfunction may prevent many common diseases

    Microvascular Phenotyping in the Maastricht Study:Design and Main Findings, 2010-2018

    Get PDF
    Microvascular dysfunction (MVD) is a common pathophysiological change that occurs in various diseases, such as type 2 diabetes mellitus (T2DM), heart failure, dementia, and depression. Recent technical advances have enabled noninvasive measurement and quantification of microvascular changes in humans. In this paper, we describe the protocols of the microvascular measurements applied in the Maastricht Study, an ongoing prospective, population-based cohort study of persons aged 40–75 years being carried out in the southern part of the Netherlands (baseline data assessment, November 2010–January 2020). The study includes a variety of noninvasive measurements in skin, retina, brain, and sublingual tissue, as well as plasma and urine biomarker assessments. Following this, we summarize our main findings involving these microvascular measurements through the end of 2018. Finally, we provide a brief perspective on future microvascular investigations within the framework of the Maastricht Study

    Higher levels of daily physical activity are associated with better skin microvascular function in type 2 diabetes—The Maastricht Study

    No full text
    Objective: Physical activity may provide a means for the prevention of cardiovascular disease via improving microvascular function. Therefore, this study investigated whether physical activity is associated with skin and retinal microvascular function. Methods: In The Maastricht Study, a population-based cohort study enriched with type 2 diabetes (n = 1298, 47.3% women, aged 60.2 ± 8.1 years, 29.5% type 2 diabetes), we studied whether accelerometer-assessed physical activity and sedentary time associate with skin and retinal microvascular function. Associations were studied by linear regression and adjusted for major cardiovascular risk factors. In addition, we investigated whether associations were stronger in type 2 diabetes. Results: In individuals with type 2 diabetes, total physical activity and higher-intensity physical activity were independently associated with greater heat-induced skin hyperemia (regression coefficients per hour), respectively, 10 (95% CI: 1; 18) and 36 perfusion units (14; 58). In individuals without type 2 diabetes, total physical activity and higher-intensity physical activity were not associated with heat-induced skin hyperemia. No associations with retinal arteriolar %-dilation were identified. Conclusion: Higher levels of total and higher-intensity physical activity were associated with greater skin microvascular vasodilation in individuals with, but not in those without, type 2 diabetes
    corecore