45 research outputs found

    Recent consequences of climate change have affected tree growth in distinct Nothofagus macrocarpa (DC.) FM Vaz & Rodr age classes in Central Chile

    Get PDF
    Forests play an important role in water and carbon cycles in semiarid regions such as the Mediterranean ecosystems. Previous research in the Chilean Mediterranean forests revealed a break point in 1980 in regional tree-ring chronologies linked to climate change. However, it is still unclear which populations and age classes are more affected by recent increases in drought conditions. In this study, we investigated the influence of recent variations in precipitation, temperature, and CO2 concentrations on tree growth of various populations and age classes of Nothofagus macrocarpa trees in Central Chile. We sampled 10 populations from five sites of N. macrocarpa through its whole geographic distribution in both Coastal and Andes ranges. We used standard dendrochronological methods to (i) group populations using principal component analysis, (ii) separate age classes (young, mature, and old trees), (iii) evaluate linear growth trends based on the basal area increment (BAI), and (iv) analyze the link between BAI and atmospheric changes using linear mixed-effects models. Results showed that young trees are more sensitive to climate variability. Regarding population grouping, we observed that all population clusters were sensitive to winter-spring precipitation, but only the Andes and Coastal populations were negatively correlated with temperature. The results of CO2 fertilization analyses were controversial and unclear. Since young trees from all population clusters reacted positively in the phase with an increase of atmospheric CO2 between 1980 and 2014, this behavior was not translated into growth for the last 15 years (2000-2014). However, it should be noted that the young trees of the highest elevation populations did not have a negative growth trend, so it seems that CO2 counteracted the negative effect of recent regional climate change (increase in temperature and precipitation decrease) in these population trees. Further studies are needed to assess the effects of climate variability over other ecological and physiological processes.Fil: Venegas González, Alejandro. Universidad Mayor.; ChileFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Peña Rojas, Karen. Universidad de Chile; ChileFil: Hadad, Martín Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Aguilera Betti, Isabella. Pontificia Universidad Católica de Valparaíso; Chile. Universidad Austral de Chile; ChileFil: Muñoz, Ariel A.. Pontificia Universidad Católica de Valparaíso; Chil

    Suitable conditions for natural regeneration in variable retention harvesting of southern Patagonian Nothofagus pumilio forests

    Get PDF
    Background: Variable retention (aggregated and dispersed retention) harvesting proposed for Nothofagus pumilio was designed for timber purposes and biodiversity conservation. Harvesting by opening canopy generates different microenvironments and creates contrasting conditions for seedling establishment, growth, and eco-physiology performance due to synergies (positives or negatives) with biotic and abiotic factors. This study evaluated the regeneration in different microenvironment conditions within managed stands during 5 years after harvesting. Remnant forest structure after harvesting and different microenvironments were characterized in managed stands, where 105 regeneration plots were measured (3 stands × 7 microenvironments × 5 replicas). We characterized the seedling bank, as well as growth and ecophysiology performance of the regeneration. Univariate and multivariate analyses were conducted for the comparisons. Results: Microenvironments offered different environmental conditions for natural regeneration (soil moisture and light availability). Seedling under debris and dicot plants showed better eco-physiological performance, establishment, and growth than plants growing under monocots or located in the dispersed retention without the protection of other understory plants. The most unfavorable microenvironment conditions were high canopy cover of remnant trees (inside the aggregates or close to trees in the dispersed retention) and heavily impacted areas (skidder extraction roads). Conclusions: Favorable microenvironments in the harvested areas will improve the natural recruitment, growth, and eco-physiology performance of the natural regeneration after harvesting. It is necessary to develop new silvicultural practices that decrease the unfavorable microenvironments (e.g., road density or excessive woody accumulation), to assure the success of the proposed silvicultural method.EEA Santa CruzFil: Toro Manríquez, Mónica D.R. Centro Austral de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cellini, Juan Manuel. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Investigaciones en Maderas; ArgentinaFil: Lencinas, María Vanessa. Centro Austral de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña Rojas, Karen A. Universidad de Chile. Facultad de Ciencias Forestales y de Conservación de la Naturaleza. Departamento de Silvicultura y Conservación de la Naturaleza; ChileFil: Martínez Pastur, Guillermo José. Centro Austral de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

    Suitable conditions for natural regeneration in variable retention harvesting of southern Patagonian <i>Nothofagus pumilio</i> forests

    Get PDF
    Background: Variable retention (aggregated and dispersed retention) harvesting proposed for Nothofagus pumilio was designed for timber purposes and biodiversity conservation. Harvesting by opening canopy generates different microenvironments and creates contrasting conditions for seedling establishment, growth, and eco-physiology performance due to synergies (positives or negatives) with biotic and abiotic factors. This study evaluated the regeneration in different microenvironment conditions within managed stands during 5 years after harvesting. Remnant forest structure after harvesting and different microenvironments were characterized in managed stands, where 105 regeneration plots were measured (3 stands × 7 microenvironments × 5 replicas). We characterized the seedling bank, as well as growth and ecophysiology performance of the regeneration. Univariate and multivariate analyses were conducted for the comparisons. Results: Microenvironments offered different environmental conditions for natural regeneration (soil moisture and light availability). Seedling under debris and dicot plants showed better eco-physiological performance, establishment, and growth than plants growing under monocots or located in the dispersed retention without the protection of other understory plants. The most unfavorable microenvironment conditions were high canopy cover of remnant trees (inside the aggregates or close to trees in the dispersed retention) and heavily impacted areas (skidder extraction roads). Conclusions: Favorable microenvironments in the harvested areas will improve the natural recruitment, growth, and eco-physiology performance of the natural regeneration after harvesting. It is necessary to develop new silvicultural practices that decrease the unfavorable microenvironments (e.g., road density or excessive woody accumulation), to assure the success of the proposed silvicultural method.Facultad de Ciencias Agrarias y ForestalesLaboratorio de Investigaciones en Mader

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    Three new brown dwarfs and a massive hot Jupiter revealed by TESS around early-type stars

    Get PDF
    Context. The detection and characterization of exoplanets and brown dwarfs around massive AF-type stars is essential to investigate and constrain the impact of stellar mass on planet properties. However, such targets are still poorly explored in radial velocity (RV) surveys because they only feature a small number of stellar lines and those are usually broadened and blended by stellar rotation as well as stellar jitter. As a result, the available information about the formation and evolution of planets and brown dwarfs around hot stars is limited. Aims. We aim to increase the sample and precisely measure the masses and eccentricities of giant planets and brown dwarfs transiting early-type stars detected by the Transiting Exoplanet Survey Satellite (TESS). Methods. We followed bright (V 6200 K that host giant companions (R > 7 R⊕) using ground-based photometric observations as well as high precision radial velocity measurements from the CORALIE, CHIRON, TRES, FEROS, and MINERVA-Australis spectrographs. Results. In the context of the search for exoplanets and brown dwarfs around early-type stars, we present the discovery of three brown dwarf companions, TOI-629b, TOI-1982b, and TOI-2543b, and one massive planet, TOI-1107b. From the joint analysis of TESS and ground-based photometry in combination with high precision radial velocity measurements, we find the brown dwarfs have masses between 66 and 68 MJup, periods between 7.54 and 17.17 days, and radii between 0.95 and 1.11 RJup. The hot Jupiter TOI-1107b has an orbital period of 4.08 days, a radius of 1.30 RJup, and a mass of 3.35 MJup. As a by-product of this program, we identified four low-mass eclipsing components (TOI-288b, TOI-446b, TOI-478b, and TOI-764b). Conclusions. Both TOI-1107b and TOI-1982b present an anomalously inflated radius with respect to the age of these systems. TOI-629 is among the hottest stars with a known transiting brown dwarf. TOI-629b and TOI-1982b are among the most eccentric brown dwarfs. The massive planet and the three brown dwarfs add to the growing population of well-characterized giant planets and brown dwarfs transiting AF-type stars and they reduce the apparent paucity

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics
    corecore