56 research outputs found
2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease
The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
A Model to Restructure Nursing Education- Vision on 22nd Street
Since 1993, the Cleveland State University Department of Nursing and the Visiting Nurse Association of Cleveland have been involved in an innovative partnership known as Vision on 22nd Street. This partnership has produced a model to restructure the nursing curriculum and the practice setting in such a way that a seamless process, fully integrated within university and agency operations, prepares undergraduate nursing students for community-based practice. The groundwork supporting the model, the development of the curriculum, the preparation of participants, and the implementation of the model for program evaluation are the subject of this article
Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in Staphylococcus aureus That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory Systemâż
We reported previously that low concentrations of sodium citrate strongly promote biofilm formation by Staphylococcus aureus laboratory strains and clinical isolates. Here, we show that citrate promotes biofilm formation via stimulating both cell-to-surface and cell-to-cell interactions. Citrate-stimulated biofilm formation is independent of the ica locus, and in fact, citrate represses polysaccharide adhesin production. We show that fibronectin binding proteins FnbA and FnbB and the global regulator SarA, which positively regulates fnbA and fnbB gene expression, are required for citrate's positive effects on biofilm formation, and citrate also stimulates fnbA and fnbB gene expression. Biofilm formation is also stimulated by several other tricarboxylic acid (TCA) cycle intermediates in an FnbA-dependent fashion. While aconitase contributes to biofilm formation in the absence of TCA cycle intermediates, it is not required for biofilm stimulation by these compounds. Furthermore, the GraRS two-component regulator and the GraRS-regulated efflux pump VraFG, identified for their roles in intermediate vancomycin resistance, are required for citrate-stimulated cell-to-cell interactions, but the GraRS regulatory system does not impact the expression of the fnbA and fnbB genes. Our data suggest that distinct genetic factors are required for the early steps in citrate-stimulated biofilm formation. Given the role of FnbA/FnbB and SarA in virulence in vivo and the lack of a role for ica-mediated biofilm formation in S. aureus catheter models of infection, we propose that the citrate-stimulated biofilm formation pathway may represent a clinically relevant pathway for the formation of these bacterial communities on medical implants
Heparin Stimulates Staphylococcus aureus Biofilm Formation
Heparin, known for its anticoagulant activity, is commonly used in catheter locks. Staphylococcus aureus, a versatile human and animal pathogen, is commonly associated with catheter-related bloodstream infections and has evolved a number of mechanisms through which it adheres to biotic and abiotic surfaces. We demonstrate that heparin increased biofilm formation by several S. aureus strains. Surface coverage and the kinetics of biofilm formation were stimulated, but primary attachment to the surface was not affected. Heparin increased S. aureus cell-cell interactions in a protein synthesis-dependent manner. The addition of heparin rescued biofilm formation of hla, ica, and sarA mutants. Our data further suggest that heparin stimulation of biofilm formation occurs neither through an increase in sigB activity nor through an increase in polysaccharide intracellular adhesin levels. These finding suggests that heparin stimulates S. aureus biofilm formation via a novel pathway
A newly characterized malaria antigen on erythrocyte and merozoite surfaces induces parasite inhibitory antibodies
We previously identified a Plasmodium falciparum (Pf) protein of unknown function encoded by a single-copy gene, PF3D7_1134300, as a target of antibodies in plasma of Tanzanian children in a whole-proteome differential screen. Here we characterize this protein as a blood-stage antigen that localizes to the surface membranes of both parasitized erythrocytes and merozoites, hence its designation as Pf erythrocyte membrane and merozoite antigen 1 (PfEMMA1). Mouse anti-PfEMMA1 antisera and affinity-purified human anti-PfEMMA1 antibodies inhibited growth of P. falciparum strains by up to 68% in growth inhibition assays. Following challenge with uniformly fatal Plasmodium berghei (Pb) ANKA, up to 40% of mice immunized with recombinant PbEMMA1 self-cured, and median survival of lethally infected mice was up to 2.6-fold longer than controls (21 vs. 8 d, P = 0.005). Furthermore, high levels of naturally acquired human anti-PfEMMA1 antibodies were associated with a 46% decrease in parasitemia over 2.5 yr of follow-up of Tanzanian children. Together, these findings suggest that antibodies to PfEMMA1 mediate protection against malaria.</jats:p
- âŠ