34 research outputs found

    Role of Subgrade Reaction Modulus in Soil–Foundation–Structure Interaction in Concrete Buildings

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: data is available upon request.One of the key issues in structural and geotechnical engineering is that most parts of buildings are usually analysed separately and then the outputs are used in foundation designs. In this process, some effects are neglected. In this study, the soil–structure interaction (SSI) in foundations of concrete buildings was evaluated using the direct finite element method (DFEM). 3D models were developed and used to analyse concrete buildings with different stories constructed on soft soil. Foundation settlement, deformation of foundation, soil pressure diagram, and weight of reinforcement in the foundation were considered as the main parameters. Deformation of the foundation was analysed using the finite element method considering the effect of combined loadings (combinations of dead load, live load, and earthquake load). It is shown that by changing values of subgrade reaction modulus (Ks) in foundation design, the effects of SSI on tall buildings can be considered automatically. The results also show that the soil–structure interaction can cause changes in the pattern of foundation settlement, foundation deformation, and the weight of reinforcement used in foundation design. Furthermore, dishing deformation in foundation appeared in terms of SSI effects. An equation is provided to simplify considering SSI effects in foundation design. This method is practical for civil (especially structural) engineers, and they can conveniently consider these effects in foundation design without using DFEM

    The study on range of motion of hip and knee in prayer by adult Muslim males. A preliminary report

    Get PDF
    Introduction: Praying represents a fundamental activity of daily living in Muslim community. Muslims need to adopt several postures that require deep flexion of the knee and hip to perform this daily obligation. This is a preliminary report of the study on hip and knee range of motion conducted to obtain normative passive and functional range of flexion data during Muslim prayers in both weight-bearing joints of normal Muslim adults. Methods: A cohort of Malay men aged between 20 to 30 years was recruited in this cross-sectional study. Passive range of motion and flexion angles of the joints in various postures during prayer were measured using a standard goniometer. The difference against existing normative range of motion database available and the influence of various factors were analysed. Factors analysed include body mass index and other anthropometric measurements. Results: Sixty participants recruited for the preliminary phase of this study. The mean (SD) of passive hip and knee flexions were higher compared to other existing normative range of motion database. A unit increase in body mass index will have 0.782 units lower of knee range of motion. The hip and knee flexion arc were from 74.1° to 119.0° and from 3.3° to 119.7° respectively. Conclusion: The range of motion involved for prayers was more for the knee but less for the hip as compared to the measured passive range of motion. Body mass index has a significant linear negative relationship with the passive range of motion of the knee, but not the hip

    Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests

    Get PDF
    Developing a robust and cost-effective method for accurately estimating tropical forest's carbon pool over large area is a fundamental requirement for the implementation of Reducing Emissions from Deforestation and forest Degradation (REDD+). This study aims at examining the independent and combined use of airborne LiDAR and Landsat 8 Operational Land Imager (OLI) data to accurately estimate the above-ground biomass (AGB) of primary tropical rainforests in Sabah, Malaysia. Thirty field plots were established in three types of lowland rainforests: alluvial, sandstone hill and heath forests that represent a wide range of AGB density and stand structure. We derived the height percentile and laser penetration variables from the airborne LiDAR and calculated the vegetation indices, tasseled cap transformation values, and the texture measures from Landsat 8 OLI data. We found that there are moderate correlations between the AGB and laser penetration variables from airborne LiDAR data (r = −0.411 to −0.790). For Landsat 8 OLI data, the 6 vegetation indices and the 46 texture measures also significantly correlated with the AGB (r = 0.366–0.519). Stepwise multiple regression analysis was performed to establish the estimation models for independent and combined use of airborne LiDAR and Landsat 8 OLI data. The results showed that the model based on a combination of the two remote sensing data achieved the highest accuracy (R 2 adj = 0.81, RMSE = 17.36%) whereas the models using Landsat 8 OLI data airborne LiDAR data independently obtained the moderate accuracy (R 2 adj = 0.52, RMSE = 24.22% and R 2 adj = 0.63, RMSE = 25.25%, respectively). Our study indicated that texture measures from Landsat 8 OLI data provided useful information for AGB estimation and synergistic use of Landsat 8 OLI and airborne LiDAR data could improve the AGB estimation of primary tropical rainforest.This work was supported by the Ministry of Higher Education of Malaysia [grant number RACE0004-STW-2012]

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore