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Abstract 23 

Developing a robust and cost-effective method for accurately estimating tropical forest’s carbon 24 

pool over large area is a fundamental requirement for the implementation of Reducing Emissions 25 

from Deforestation and forest Degradation (REDD+). This study aims at examining the 26 

independent and combined use of airborne LiDAR and Landsat 8 Operational Land Imager (OLI) 27 

data to accurately estimate the above-ground biomass (AGB) of primary tropical rainforests in 28 

Sabah, Malaysia. Thirty field plots were established in three types of lowland rainforests: alluvial, 29 

sandstone hill and heath forests that represent a wide range of AGB density and stand structure. 30 

We derived the height percentile and laser penetration variables from the airborne LiDAR and 31 

calculated the vegetation indices, tasseled cap transformation values, and the texture measures 32 

from Landsat 8 OLI data. We found that there are moderate correlations between the AGB and 33 

laser penetration variables from airborne LiDAR data (r = -0.411 to -0.790). For Landsat 8 OLI 34 

data, the 6 vegetation indices and the 46 texture measures also significantly correlated with the 35 

AGB (r = 0.366 to 0.519). Stepwise multiple regression analysis was performed to establish the 36 

estimation models for independent and combined use of airborne LiDAR and Landsat 8 OLI data. 37 

The results showed that the model based on a combination of the two remote sensing data 38 

achieved the highest accuracy (R2
adj = 0.81, RMSE = 17.36%) whereas the models using 39 

Landsat 8 OLI data airborne LiDAR data independently obtained the moderate accuracy (R2
adj = 40 

0.52, RMSE = 24.22% and R2
adj = 0.63, RMSE = 25.25%, respectively). Our study indicated that 41 

texture measures from Landsat 8 OLI data provided useful information for AGB estimation and 42 

synergistic use of Landsat 8 OLI and airborne LiDAR data could improve the AGB estimation of 43 

primary tropical rainforest. 44 

 45 

Keywords: Tropical forest; Above-ground biomass; Landsat 8 OLI; Airborne LiDAR; Borneo; 46 
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1. Introduction 48 

Tropical rainforests are among the largest terrestrial carbon reservoirs, as well as 49 

supporting some of the highest levels of biodiversity (Brown and Lugo 1982; Huston and 50 

Marland 2003; Saatchi et al. 2011). Conserving these biodiversity and carbon-rich habitats 51 

through reduction of deforestation and forest degradation is seen as an effective mitigation 52 

measure to combat climate change and conserve biodiversity (Imai et al., 2014). Under the 53 

United Nations Framework Convention on Climate Change (UNFCCC), there are ongoing 54 

negotiations to develop a mechanism to reduce emissions from deforestation and forest 55 

degradation, through conservation, sustainable management of forests and enhancement of 56 

forest carbon stocks in developing countries (REDD+). Developing a robust and cost-effective 57 

method for accurately estimating carbon pool in tropical rainforests over large area is a 58 

fundamental requirement for the implementation of REDD+. Estimating above-ground biomass 59 

(AGB) is critical to quantify carbon stocks in the tropics since AGB of trees in tropical forests 60 

account for a significant part of the total carbon pool (Houghton et al., 2001).  61 

 AGB estimation in tropical forest involves field measurements which are time-consuming, 62 

costly and labor intensive. AGB estimation using remote sensing with field measurements is a 63 

cost-effective approach recommended for REDD+ (Stern 2007). To date, spaceborne optical 64 

and radar data as well as airborne Light Detection and Ranging (LiDAR) data have been 65 

employed and analyzed to develop AGB estimation models in different types of forests at 66 

various scales (Gibbs et al. 2007, Koch 2010). Several studies have demonstrated useful 67 

relationships between backscatters from spaceborne Synthetic Aperture Radar (SAR) data and 68 

AGB in tropical forests (Englhart et al. 2011, Morel et al. 2011, Saatchi et al. 2011), but it has 69 

been shown that the signal saturates at the high forest AGB, depending on wavelength (Balzter 70 

et al., 2007, Englhart et al., 2011, Mitchard et al., 2011). On the other hand, spaceborne optical 71 

data, especially Landsat data is probably the most frequently used medium spatial-resolution 72 

http://www.sciencedirect.com/science/article/pii/S0034425714004581#bb0045
http://www.sciencedirect.com/science/article/pii/S0034425714004581#bb0045
http://www.sciencedirect.com/science/article/pii/S0034425714004581#bb0155
http://www.sciencedirect.com/science/article/pii/S0034425714004581#bb0355
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data in AGB estimation at local and regional scales (Sader et al. 1989, Roy and Ravan 1996, 73 

Nelson et al. 2000, Foody et al. 2003, Phua and Saito 2003, Lu 2005, Kelsey & Neff, 2014, 74 

Karlson et al. 2015). The advantages of medium resolution satellite data are the acquisition cost, 75 

revisiting frequency and the broad spatial coverage. However, a critical limitation of AGB 76 

estimation from Landsat data and other medium-to-coarse spatial resolution multispectral 77 

images is that the estimation is heavily affected by the spectral saturation in high biomass 78 

forests (Dube et al., 2014; Ingram et al., 2005; Lu, 2006; Mutanga et al., 2012; Mutanga and 79 

Skidmore, 2004; Nichol and Sarker, 2011). Therefore, vegetation-index based approaches have 80 

achieved only limited success in tropical and subtropical regions where the forests have high 81 

AGB, associated with complex structure and dense canopy, as well as high species diversity 82 

(Foody et al., 2001; Lu, 2005; Nelson et al., 2000). 83 

Recent studies of AGB estimation suggest the usefulness of texture variables rather than 84 

spectral vegetation indices (Wijaya et al. 2010; Kelsey and Neff, 2014; Dube and Mutanga. 85 

2015a). Several studies have used texture measures derived from high-resolution satellite data. 86 

These have shown that image textural measures have the potential to improve the 87 

characterization of different forest types (Eckert, 2012; Nichol and Sarker, 2011; Pandey et al., 88 

2010; Pinto et al., 2012; Sarker and Nichol, 2011). Image texture variables could provide a 89 

promising opportunity for capturing forest structural attributes and may help improve AGB 90 

estimation in tropical forests by compensating for spectral saturation (Lu 2005; Kelsey and Neff 91 

2014). Although there are several studies that have successfully used the texture variables of 92 

high-resolution satellite data to estimate AGB in tropical forests (Proisy et al., 2007; Ploton et al., 93 

2012; Pargal et al., 2017), the relationship between the texture measures from medium spatial 94 

resolution sensors and AGB has not been studied fully, especially when compared to raw 95 

spectral band information and vegetation indices (Dube and Mutanga 2015a). More recently, 96 

Landsat 8 Operational Land Imager (OLI) data became available and it is assumed to provide 97 
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better opportunities for understanding the contribution of forest ecosystems to the carbon cycle 98 

(Dube and Mutanga 2015b). Compared to Landsat 7 ETM+, the newly-launched Landsat 8 OLI 99 

sensor exhibits several design improvements, including narrower near infrared wavebands, 100 

higher signal-to-noise ratio, and enhanced radiometric sensitivity. Recent studies suggest that 101 

the image texture measures from Landsat 8 OLI data show good potential in estimating AGB in 102 

Sudano-Sahelian woodland (Karlson et al. 2015) and in African plantation forest (Dube and 103 

Mutanga 2015a). The challenging task for texture extraction in AGB estimation is how to identify 104 

suitable texture parameters together with the optimal window size (Lu 2005; Dube and Mutanga 105 

2015a). 106 

 Although spectral information and texture measures derived from satellite images can be 107 

useful in AGB estimation, it does not capture the vertical height information of forest canopy. 108 

Forest canopy height is the 3-dimensional determinant of AGB of a forest (Asner et al. 2012b). 109 

Forest canopy height can be derived from active remote sensing systems (Brown, 2002; Lu, 110 

2006; Mitchard et al., 2009). Several attempts have been made to estimate forest canopy height 111 

using synthetic aperture radar (SAR) (Köhler and Huth 2010, Saatchi et al. 2011b). The bistatic 112 

TanDEM-Xmission acquires multiple globally consistent single-pass interferometric datasets to 113 

create global digital elevation model (Krieger et al., 2007). Recent studies have attempted to 114 

estimate forest canopy height from the interferometric coherence analysis of the TanDEM-X 115 

mission data. However, it is likely that the inherent limitation of penetration into dense forest 116 

canopy still remains and therefore saturation problems at higher AGB level are expected (Kugler 117 

et al. 2014). Although, Minh et al. (2016) had improved AGB estimates for tropical forests in 118 

French Guiana using an airborne tomographic SAR approach. 119 

Airborne LiDAR is widely recognized as a remote sensing technology that is capable of 120 

acquiring very accurate data on forest canopy and terrain height. LiDAR has been used 121 

successfully to estimate forest AGB in various regions including in the tropics without saturation 122 
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problems (e.g., Zhao et al. 2009, Drake et al. 2003, Asner et al. 2012b, Ioki et al. 2014, Phua et 123 

al. 2016). Although airborne LiDAR data can provide highly accurate AGB estimation, it is 124 

possible that inclusion of an additional independent source of data that correlates with forest 125 

structure or other biophysical properties can further improve its ability to estimate AGB. Several 126 

studies have investigated the combined use of airborne LiDAR data and multispectral remotely 127 

sensed data for estimating AGB and other forest biophysical properties in boreal or temperate 128 

forests (Popescu et al. 2004, Hyde et al. 2006, Takahashi et al. 2010; Dalponte and Coomes 129 

2016). However, the performance of the integrated use of the airborne LiDAR and Landsat 8 OLI 130 

data for AGB estimation has yet to be examined in tropical forests. Considering the ability of the 131 

image texture measures from Landsat 5 and Landsat 7 images, synergistic use of airborne 132 

LiDAR and multispectral satellite data for estimating AGB deserves further attentions. This study 133 

aims to examine the independent and combined use of airborne LiDAR and the widely-available 134 

Landsat 8 OLI data to accurately estimate the AGB of tropical lowland rainforests in the Sepilok 135 

Forest Reserve (SFR), Sabah, Malaysia. SFR is a protection forest reserve that contains three 136 

distinctive types of lowland tropical forests: alluvial, sandstone hill and heath forests that 137 

represent a wide range of AGB density and stand structure (Nilus et al. 2011). Therefore, it 138 

provides an attractive opportunity to evaluate the performance of the derived variables from 139 

each remote sensing data across different types of tropical lowland rainforests.  140 

 141 

2. Materials and Methods 142 

2.1 Study Area 143 

The study area, SFR, is located at Sandakan, Sabah (5˚ 10’ N, 117˚56’ E). SFR is a 144 

primary lowland tropical forest of 4,924 ha in area under the protection of the Sabah Forestry 145 

Department. Sandakan receives an average annual rainfall of about 2400 mm throughout the 146 
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year and has a mean annual temperature of 27.3˚C (Malaysia Meteorological Service Monthly 147 

Report, unpublished data). 148 

 149 

Fig. 1. Location of Sepilok Forest Reserve.  150 

 151 

The SFR consists of three different forest types: alluvial, sandstone hill and heath 152 

(Kerangas) forests (Fox 1973). The Alluvial forest is dominated by large dipterocarp trees: the 153 

most abundant species in this forest type include Parashorea tomentella and Shorea johorensis. 154 

For the sandstone hill forest, the most abundant tree species are Shorea multiflora, Shorea 155 

beccariana and Dipterocarpus acutangulus. The heath forest is dominated by Tristaniopsis 156 

merguensis (Nilus et al. 2011).  157 

 158 

 159 



8 
 

2.2 Field Data Collection 160 

A total of 30 plots were established within SFR from May 2013 to May 2015. Plot size 161 

varied according to differences in tree height within the different forest types. We established 50 162 

m × 50 m plots in the alluvial forest and 30 m × 30 m plots in the heath and sandstone hill forests. 163 

Within the plots, the diameter at breast height (DBH) and tree height were measured for all trees 164 

having a DBH greater than 10 cm. Crown diameter were recorded only for 10 alluvial, 3 heath, 3 165 

sandstone hill forest plots. The plot coordinates were determined by post-processing of 166 

differential GNSS (DGNSS) data using Javad Triumph-1 (JAVAD GNSS, San Jose, CA, USA). 167 

Of the 30 plots, 12 plots were located within the alluvial forest, 9 plots in the sandstone hill forest 168 

and 9 plots in the heath forest. All trees were identified to species level by local botanical experts. 169 

For the trees that could not be identified in situ, voucher specimens were collected and taken to 170 

the local herbarium. Samples that could not be identified to species were listed as 171 

morphospecies. 172 

AGB was calculated according to the allometric equation of Chave et al. (2014) as: 173 

AGB = 0.0673 × (ρ × D2 × H)0.976  174 

 175 

where D is DBH (cm), H is height (m) and ρ is the wood-specific gravity (g/cm3). The wood-176 

specific gravity ρ for the sampled species/genera were obtained from various sources 177 

(Lemmens et al., 1995; Soerianegara and Lemmens, 1993; Sosef et al., 1998). When a range of 178 

ρ values were reported for a species, a median value was used (Imai et al., 2014; Slik, 2006). In 179 

cases, where ρ values were unavailable for a species, the average across all species in that 180 

genus was applied (see Baker et al., 2004; Slik, 2006). When trees could not be identified at the 181 

generic level or where no literature record was available, the mean wood density of that plot was 182 
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used. The summary of field measurements and crown measurements are presented in Table 1a 183 

and 1b, respectively.  184 

Table 1a 185 

Summary for the mean values of field measurements in each forest type. 186 

Forest types  Height 
(m) 

Lorey’s 
height 
(m) 1 

DBH 
(cm) 

 AGB 
(t/ha) 

Basal 
area 

(m2/ha) 

Wood 
density 
(g/cm3)1 

Alluvial forest 20.04 43.76 25.23 721.39 41.86 7.12 

Heath forest 19.78 24.08 21.25 339.78 32.16 16.33 

Sandstone hill 
forest 

22.93 35.11 25.34 814.16 56.59 8.38 

All forests 20.83 35.26 24.07 646.06 43.37 10.26 

1 Weighted by basal area   

 187 

Table 1b  188 

Crown diameter measurements from the 10 alluvial, 3 heath, and 3 sandstone hill forest plots. 189 

Forest types 
Alluvial 
forest 

Heath 
forest 

Sandstone 
hill forest 

All 
forests 

Crown diameter (m)         

Max 30.48 14.80 20.85 30.48 

Mean 4.80 6.26 6.90 6.81 

Min 1.20 0.88 0.35 0.35 

S.D. 3.97 1.97 3.41 3.44 

 190 

 191 

2.3 Landsat 8 OLI image  192 

We acquired a Landsat 8 OLI image of SFR (path 117, row 56) that was taken on 25 193 

August 2014. The Landsat 8 OLI sensor provides multispectral data with a spatial resolution of 194 

30 meters. For each of the six bands from the Landsat 8 OLI image, (Band 2-blue, 3-green, 4-195 
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red, 5-near infrared, 6-SWIR1 and 7-SWIR2), we converted the digital number (DN) value to top 196 

of atmosphere (TOA) radiance for every pixel using the radiance rescaling factors in the 197 

attached metadata file. An atmospheric correction was conducted using the Dark Subtraction 198 

Method (Chavez 1988). Table 2 shows the vegetation indices computed from the Landsat data 199 

included in this study: Normalized Vegetation Difference index (NDVI), Transformed Vegetation 200 

Index (TVI), Simple Vegetation Index (SVI), Differenced Vegetation Index (DVI), Ratio 201 

Vegetation Index (RVI), Normalized Ratio Vegetation Index (NRVI) and Soil Adjusted Vegetation 202 

Index (SAVI). In addition, the tasseled cap transformation was applied to the Landsat data to 203 

produce brightness, greenness and wetness indices (Table 2).  204 

 205 

Table 2  206 

Selected vegetation indices and image texture measures derived from Landsat 8 OLI image. 207 

Parameters Equation References 

Vegetation indices 

Normalized vegetation 
difference index  
(NDVI) 

(NIR - red) / (NIR + red) + 0.5 Rouse et al. (1974) 

Transformed vegetation 
index  
(TVI) 

 
Deering et al. (1975) 

Simple vegetation index 
(SVI) 

red / NIR Tucker (1979) 

Differenced vegetation 
index  
(DVI) 

NIR - red Tucker (1980) 

Ratio vegetation index 
(RVI) 

NIR / red Jordan (1969) 

Normalized ration 
vegetation index  
(NRVI) 

(RVI - 1) / (RVI + 1) Baret and Guyot (1991) 

Soil adjusted vegetation 
index  
(SAVI) 

{(NIR - red) / (NIR + red + 0.5)} x (1 + 0.5) Heute (1988) 

Tasseled cap transformation 

Brightness 0.3029B2 + 0.786493B3 + 0.4733B4 + 
0.5599B5 + 0.508B6 + 0.1707B7 

Huang et al. (2002) 

Greenness -0.2941B2 - 0.243B3 - 0.5424B4 - Huang et al. (2002) 
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0.7276B5 + 0.0731B6 - 0.1608B7 
Wetness 0.1511B2 + 0.1973B3 + 0.3283B4 + 

0.3407B5 - 0.7117B6 - 0.4559B7 
Huang et al. (2002) 

Gray-level co-occurrence matrices (GLCM) 

Mean  

 

 

Variance  

 

 

Homogeneity  

 

 

Dissimilarity  

 

 

Entropy  

 

 

Second moment 

 

 

Correlation  

 

 

Contrast  

 

 

 208 

Texture variables were derived using Gray-Level Co-occurrence Matrices (GLCM) 209 

texture algorithms calculated with a relative displacement vector (d, ϴ), which explains the 210 

spatial distribution of the level pairs separated by d in direction ϴ (Haralick et al., 1973). Based 211 

on the study of Lu (2005), we selected eight texture variables: mean, variance, homogeneity, 212 

dissimilarity, entropy, second moment, correlation and contrast as predictors (Table 2). The 213 

performance of texture variables in AGB estimation depends on the moving window size (Kelsey 214 

and Neff 2014). All texture variables were computed using the six Landsat 8 OLI multispectral 215 

bands with five moving window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 pixels. 216 

 217 

2.4 Airborne LiDAR data 218 

Airborne LiDAR data were acquired in October 2013 using an Optech Orion C200 sensor, 219 

mounted on a Nomad C22 aircraft. The LiDAR data was collected at an altitude of 600 m a.g.l, 220 
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speed of 41.2 m/s, scan angle of ±14° and pulse density of 10.58 pulses per square meter. The 221 

sensor system also consists of a DGNSS receiver coupled to an inertial measurement unit, both 222 

components ensuring that a sub-decimeter differential position can be calculated for the aircraft 223 

in post-processing. A residential area less than 20 km from the SFR was also scanned for 224 

calibration of the LiDAR data.  225 

The point clouds were calibrated with a root-mean-square error (RMSE) of 0.0028 m for 226 

the 9 flight lines. The processed LiDAR point clouds were separated into two different classes; 227 

ground and non-ground points. The ground points were triangulated using natural neighbor to 228 

generate a digital terrain model (DTM) raster in ArcGIS software. We calculated three canopy 229 

height models (CHMs) following Asner and Mascaro (2014). CHMs are calculated by subtracting 230 

the DTM value from the non-ground point’s z value. The top canopy height (TCH) model was 231 

determined from the maximum z value of the points, while the mean and medium CHMs were 232 

calculated based on the mean (MeanCH) and median (MedCH) z values of the points. The laser 233 

penetration (LP) rates were calculated as the ratio of last of many returns below a certain height 234 

(1, 2, 5, 7, 10, 12, 14, 16, 18, 20 or 28 m) relative to the number of laser shots (i.e. sum of the 235 

number of first of many returns and single returns), giving twelve laser penetration variable LP1, 236 

LP2, LP5, LP7, LP10, LP12, LP14 LP16, LP18, LP20 and LP28:  237 

LP(x) =  238 

Although the data included multiple returns from each shot, we used only the first and 239 

last returns for LP calculation (Ioki et al., 2014). These CHMs and LPs were computed at 1-m 240 

resolution and their average values were derived for each field plot. In addition, the 60th, 70th, 241 

80th and 90th percentiles (h60, h70, h80, and h90) were also calculated from the height of point 242 

clouds for all the plots.   243 

 244 
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2.5 Statistical analysis 245 

The correlations between field AGB and the computed variables from the Landsat 8 OLI 246 

and LiDAR data were examined using Pearson’s correlation. AGB estimation models were then 247 

developed using stepwise multiple linear regression analysis. In order to examine the 248 

performance of each remotely sensed data product and their combination, we conducted the 249 

regression analysis with 1) only Landsat 8 OLI image variables, 2) only LiDAR variables, and 3) 250 

Landsat 8 OLI image variables and LiDAR variables. The variables were natural-log transformed 251 

because canopy heights are known to have nonlinear (i.e. multiplicative) relationship with other 252 

structural variables e.g. DBH and AGB (Yamakura et al. 1986; Basuki et al. 2009). Since we had 253 

a limited number of field plots,  leave-one-out cross-validation was performed to avoid overfitting 254 

of the model. The performance of the estimation models was evaluated using adjusted 255 

coefficient of determination (R2 
adj), RMSE and RMSE from cross-validation results (noted as 256 

RMSEcv). The statistical analyses were carried out using SPSS Statistics 21 (IBM, USA). To 257 

examine multi-collinearity effects, variable inflator factor (VIF) was calculated. We considered a 258 

VIF value greater than 10 as unacceptable for multicollinearity (Zuur et al. 2010).  259 

 260 

3. Results 261 

3.1 Pearson correlation analysis 262 

Statistically significant Person’s correlation coefficient (r) for the relationship between 263 

AGB and derived variables from airborne LiDAR data and Landsat 8 OLI image are presented in 264 

Table 3. There were relatively strong negative correlations between the LiDAR LP variables and 265 

the field observed AGB, with the highest r of -0.790 for LP24. LiDAR height variables also had 266 

moderate correlations, which ranged between r = 0.480 – 0.614. For Landsat 8 OLI variables, 46 267 

out of 200 variables from texture measures had moderate correlations: mean of band 3 (green), 268 
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variance of band 4 (red), homogeneity of band 4 (red) and 5 (near-Infrared), contrast of band 4 269 

(red), dissimilarity of band 4 (red), entropy of bands 4 (red) and 5 (near-Infrared), second 270 

moment of bands 4 (red) and 5 (near-Infrared), correlation of bands 4 (red) with different moving 271 

window sizes. The highest correlation coefficient value among texture measures was observed 272 

for the homogeneity of band 4 (red) with 3 × 3 moving window size, the correlation of band 4 273 

(red) with 3 × 3 and 5 × 5 moving window size (| r | = 0.519), followed by the homogeneity of 274 

band 4 (red) with 7 × 7 and 11 × 11 moving window size (r = -0.516), the contrast of band 4 (red) 275 

with 7 × 7 and 11 × 11 moving window size (r = 0.516) and the dissimilarity of band 4 (red) with 276 

9 × 9 moving window size (r = 0.516). Five out of the 6 vegetation indices had weak correlations, 277 

ranged between | r | = 0.406 – 0.419, however, none of the tasseled cap transformation values 278 

from Landsat 8 OLI image were significantly correlated with field observed AGB. 279 

 280 

Table 3 281 

Statistically significant Pearson’s correlation coefficients r between the field observed AGB and 282 

the derived variables from airborne LiDAR data and Landsat 8 OLI image. 283 

Variables r   Variables r 

LiDAR height variables 
 

Landsat 8 OLI texture metrics 

TCH 0.480 ** 
 

B3 mean (5 × 5) -0.396 * 

MeanCH 0.614 ** 
 

B3 mean (7 × 7) -0.394 * 

MedCH 0.595 ** 
 

B3 mean (9 × 9) -0.395 * 

h60 0.583 ** 
 

B3 mean (11 × 11) -0.397 * 

h70 0.575 ** 
 

B4 variance (3 × 3) 0.482 ** 

h80 0.573 ** 
 

B4 variance (5 × 5) 0.508 ** 

h90 0.573 ** 
 

B4 variance (7 × 7) 0.506 ** 

    
B4 homogeneity (5 × 5) -0.506 ** 

LiDAR LP variables 
   

B4 homogeneity (3 × 3) 0.519 ** 

LP1 -0.468 ** 
 

B4 homogeneity (7 × 7) -0.516 ** 

LP2 -0.411 * 
 

B4 homogeneity (9 × 9) -0.516 ** 

LP5 -0.441 * 
 

B4 homogeneity (11 × 11) -0.512 ** 
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LP7 -0.540 ** 
 

B5 homogeneity (3 × 3) 0.366 * 

LP10 -0.610 ** 
 

B4 contrast (3 × 3) 0.510 ** 

LP12 -0.677 ** 
 

B4 contrast (5 × 5) 0.506 ** 

LP14 -0.734 ** 
 

B4 contrast (7 × 7) 0.516 ** 

LP16 -0.766 ** 
 

B4 contrast (9 × 9) 0.516 ** 

LP18 -0.779 ** 
 

B4 contrast (11 × 11) 0.512 ** 

LP20 -0.786 ** 
 

B4 dissimilarity (3 × 3) 0.510 ** 

LP24 -0.790 ** 
 

B4 dissimilarity (5 × 5) 0.506 ** 

LP28 -0.760 ** 
 

B4 dissimilarity (9 × 9) 0.516 ** 

    
B4 dissimilarity (11 × 11) 0.512 ** 

Landsat 8 OLI vegetation indices 
  

B4 entrophy (3 × 3) 0.510 ** 

NDVI 0.406 * 
 

B4 entrophy (7 × 7) 0.510 ** 

TVI 0.406 * 
 

B4 entrophy (5 × 5) 0.506 ** 

SVI -0.419 * 
 

B4 entrophy (9 × 9) 0.512 ** 

RVI 0.411 * 
 

B4 entrophy (11 × 11) 0.512 ** 

NRVI 0.418 * 
 

B5 entrophy (3 × 3) 0.429 * 

SAVI 0.417 * 
 

B5 entrophy (7 × 7) 0.426 * 

    
B5 entrophy (5 × 5) 0.424 * 

    
B5 entrophy (9 × 9) 0.420 * 

    
B5 entrophy (11 × 11) 0.409 * 

    
B4 second moment (3 × 3) -0.510 ** 

    
B4 second moment (5 × 5) -0.411 * 

    
B4 second moment (7 × 7) -0.511 ** 

    
B4 second moment (9 × 9) -0.513 ** 

    

B4 second moment (11 × 
11) -0.513 ** 

    
B5 second moment (3 × 3) -0.425 * 

    
B5 second moment (7 × 7) -0.422 * 

    
B5 second moment (9 × 9) -0.416 * 

    

B5 second moment (11 × 
11) -0.406 * 

    
B4 correlation (7 × 7) -0.515 ** 

    
B4 correlation (9 × 9) -0.505 ** 

    
B4 correlation (11 × 11) -0.503 ** 

    
B5 correlation (3 × 3) -0.406 * 

        B5 correlation (5 × 5) -0.516 ** 

**Significant at the 0.01 level. 
    *Significant at the 0.05 level. 
     284 

 285 
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3.2 Models by multiple regression analysis 286 

 The results of stepwise multiple regression analysis for the AGB estimation is shown in 287 

Table 4. When only the variables from Landsat 8 OLI image were used in the regression 288 

analysis, the best model included two LiDAR variables and two texture variables (Table 4a and 289 

Fig. 2a). The model had an R2
adj of 0.52 and an RMSE of 156.45 t/ha, corresponding to 24.22% 290 

of the mean AGB. The texture variable of correlation of band 4 (red) with 3 × 3 moving window 291 

contributed the most to this model, followed by correlation of band 5 (near-Infrared) with 5 × 5 292 

moving window, and homogeneity of band 5 (near-Infrared) with 5 × 5 moving window. When 293 

only LiDAR variables were used in the regression analysis, the best model selected a single 294 

laser penetration variable, LP24, and produced an R2
adj of 0.63 and an RMSE of 163.11 t/ha, 295 

corresponding to 25.25% of the mean AGB (Table 4a and Fig. 2b).  296 

 297 

Table 4a 298 

Results of multiple regression analysis of airborne LiDAR data, Landsat 8 OLI image and a 299 

combination use of airborne LiDAR and Landsat 8 OLI image. 300 

Data type Dependent 
variable 

Independent 
variables 

Adjusted 
R2 

RMSE  
(t/ha) 

RMSEcv  
(t/ha)  

Mean 
prediction 
bias (t/ha)1 

LiDAR ln(AGB) lnLP24 0.63 163.11 
(25.25%) 

178.77 
(27.67%) 

13.36 

Landsat 8 
OLI 

AGB B4 correlation 
(3x3) 

0.52 156.45 
(24.22%) 

191.19 
(29.59%) 

4.24 

B5 correlation 
(5x5) 

 

B5 
homogeneity 
(5x5) 
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Combined 
LiDAR and 
Landsat 8 
OLI 

ln(AGB) lnLP24 0.81 112.15 
(17.36%) 

131.33 
(20.33%) 

7.01 

B3 mean (3x3)  

lnMedCH  

B3 second 
moment (5x5) 

 

 301 

Table 4b 302 

Stepwise regression results for the best model 303 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig.  

Collinearity 
Statistics 

B 
Std. 
Error 

Beta Tolerance VIF 

(Constant) 2.015 1.168 − 1.725 0.097 − − 
lnLP24 -0.692 0.131 -0.602 -5.275 0 0.496 2.017 
mean 3x3 _b3 -0.309 0.081 -0.311 -3.842 0.001 0.988 1.012 
ln_mediandchm 0.517 0.154 0.392 3.368 0.002 0.476 2.1 
Second moment 
5x5 _b3 

2.708 0.967 0.241 2.8 0.01 0.87 1.149 

 304 

 305 

 For the combined use of the variables from airborne LiDAR and Landsat 8 OLI data, we 306 

obtained an improved model with two LiDAR variable and two Landsat 8 OLI variables in which 307 

both of them were texture variables (Table 4a and Fig. 2c). The model yielded a higher R2
adj 308 

value at 0.81 and a lower RMSE at 112.15 t/ha, corresponding to 17.36% of the mean AGB 309 

compared to the models with only Landsat 8 OLI or LiDAR variables. The laser penetration 310 

variable LP24 contributed the most to this model, followed by the mean of band 3 (green) with 3 311 

× 3 moving window, the MedCH of LiDAR height variable and the second moment of band 3 312 

(green) with 5 × 5 window. 313 

 314 
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 315 

Fig. 2. Observed AGB (t/ha) versus estimated AGB (t/ha). Using variables derived from (a) 316 

airborne LiDAR, (b) Landsat 8 OLI, (c) airborne LiDAR and Landsat 8 OLI. The estimated AGB 317 

values were from the leave-one-out cross validation. 318 

 319 

4. Discussion  320 

In this study, we investigated the performance of variables derived from Landsat 8 OLI 321 

sensor with airborne LiDAR metrics to estimate AGB in tropical lowland rainforests. The results 322 

from this study showed that texture measures calculated from Landsat 8 OLI images, such as 323 

homogeneity, correlation, second moment and mean were more effective than spectral 324 

vegetation indices. While 41 texture measures were significantly correlated with AGB, none of 325 

the variables from the tasseled cap transformation and vegetation index showed significant 326 

correlations with AGB. Similar observations were reported in previous researches using Landsat 327 

data (Lu 2005; Kelsey and Neff 2014; Dube and Mutanga 2015a). Vegetation indices are not 328 

likely to perform well in the closed canopy forests with complex structure because of 1) 329 

saturation problems and 2) shadow effects of the tall trees (Lu et al., 2004; Dube et al. 2014). 330 

These explain why the vegetation indices had low correlations with AGB in the SFR forests.  331 

On the other hand, textures measures from Landsat 8 OLI image exhibit greater potential 332 

for AGB estimation. Texture measures have the capability to enhance the discrimination of 333 
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spatial information and AGB detection levels simultaneously which could not be measured with 334 

spectral vegetation indices (Eckert, 2012; Santos et al., 2003; Sarker and Nichol, 2011; Vashum 335 

and Jayakumar, 2012; Xu et al., 2011). Texture measures from medium-to-high spatial 336 

resolution images are also capable of simplifying complex canopy structure information and 337 

have strong correlation with forest stand structure including density, age, and leaf area index 338 

(Champion et al., 2008; Barbosa et al., 2014; Eckert, 2012). Several studies pointed out that the 339 

texture measures were sensitive to the spatial aspects of canopy shadow (Eckert, 2012; Sarker 340 

and Nichol, 2011). Among the three forest types of this study (alluvial, heath and sandstone hill 341 

forests), the alluvial and sandstone hill forests which store greater AGB generally have larger 342 

crown sizes compared to the heath forest which has smaller AGB (Table 1b). The plots in these 343 

two forests are dominated by a few large trees with large crown diameters that create a 344 

substantial shadowing effect (Table 1a and 1b). In contrast, the plots in the heath forest have a 345 

much higher number of stems with relatively small crown sizes. These differences lead to higher 346 

canopy ruggedness in the Landsat OLI image for alluvial and sandstone hill forests, whereas in 347 

the heath forest, the canopy texture is relatively smooth. This shadowing effect is further 348 

enhanced by the greater variability in over-story canopy heights in these two forests. In 349 

combination, these differences contributed to the value of the texture measures that correlated 350 

to AGB such as correlation and second moment (Table 4b). For the best model, 63% of the AGB 351 

variance was explained by the laser penetration variable at 24 m, and the remaining 18% 352 

contributed by band 3 mean (3 × 3), lnMedCH and band 3 second moment (5 × 5). The only 353 

texture measure retained in the best model was band 3 second moment, and this captured the 354 

relatively high orderliness of the pixel values in the heath forest (approaching a value of 1), but 355 

less so for the more heterogeneous alluvial and sandstone hill forests.  356 

The window sizes for the selected texture variables were much larger (0.81 ha and 2.25 357 

ha for 3 × 3 and 5 × 5 window sizes) than the plot sizes used in this study (0.09 ha and 0.25 ha). 358 



20 
 

This mismatch in spatial scales between field inventory plots and larger pixels of images has the 359 

potential to introduce errors, especially if forest AGB shows strong local spatial variation (Réjou-360 

Méchain et al. 2014). Whether this is an issue in our study is unknown and it should be 361 

examined in future studies  362 

The good performance of texture measures in the AGB modeling can be attributed to the 363 

sensor’s design of Landsat 8 OLI. The push-broom sensor design of Landsat 8 OLI receives 364 

stronger signals and has improved signal-to-noise performance due to its long and linear arrays 365 

of detectors (Irons et al. 2012). The spectral range of Landsat 8 OLI is also narrower and the 366 

refinement of OLI bands could help avoid atmospheric absorption feature (Lu 2006; Irons et al. 367 

2012; Li et al. 2013). These technical improvements allow accurate surface spectral detection 368 

and reduce spectral saturation problems (Dube and Mutanga 2015a). 369 

LiDAR variables, especially the laser penetration variables, had better correlation with 370 

AGB than most of the texture measures. The highest r was observed for LP24 (-0.790), followed 371 

by LP20 (-0.786). The strong correlations between the LP variables and the AGB are most likely 372 

related to the canopy height differences of the three different forest types. Stepwise multiple 373 

regression analysis showed that a single variable (LP24) was sufficient for AGB prediction. The 374 

Lorey’s mean height of the alluvial forest, the heath forest, and the sandstone hill forest are 375 

43.27 m, 24.09 m and 35.12 m respectively. This suggests that most of the tree canopies were 376 

located above 18 – 20 m in the alluvial and sandstone forests which had the greatest amount of 377 

AGB. Therefore, lower penetration rates were observed at heights below 24 m after the lasers 378 

travelled through the canopies in these forests. The heath forest had higher penetration rates at 379 

20 m and above because most of the canopies were located only at around 20 – 25 m height. 380 

LP variables have explained the AGB difference between the forests with relatively large AGB 381 

(alluvial and sandstone hill forests) and the heath forest where smaller AGB was stored. In other 382 

literatures, variables derived directly from the LiDAR height statistics are often selected as the 383 
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AGB predictor in tropical forests (Asner et al. 2012a; Ota et al. 2015). However, in this study, LP 384 

variables were the better predictors for AGB, because LP variables are probably linked to the 385 

canopy structure difference of forest types (Ioki et al. 2016). Our result indicates the potential 386 

use of LP variables for AGB estimation in primary tropical forests with different forest types.  387 

The combination of Landsat 8 OLI image and airborne LiDAR data further improved the 388 

accuracy of AGB estimation, compared to when these two data were separately used (R2
adj 389 

increased from 0.52 and 0.63 respectively, to 0.81), suggesting complementarity of these data. 390 

Combinations of LiDAR and hyperspectral/high-resolution multi-spectral data, and combinations 391 

of Landsat and SAR images have been explored previously (Popescu et al. 2004; Swatantran et 392 

al. 2011; Laurin et al. 2014; Cutler et al. 2012), we know of only one previous study that 393 

combined LiDAR and Landsat data to estimate AGB (Hyde et al. 2006). Hyde et al. (2006) 394 

examined the combination use of multi-sensors (LiDAR, SAR/InSAR, ETM+, Quickbird) for 395 

estimating AGB in the Sierra Nevada Mountains of California, USA. In their study, the 396 

combination use of Landsat ETM+ image and airborne LiDAR data produced the best regression 397 

model. The sensor improvement of Landsat 8 OLI will provide better opportunities for the 398 

integrated use with airborne LiDAR data in AGB estimation. To determine the applicability of our 399 

approach, further research should be carried out in other tropical forest types or over larger 400 

scales. 401 

 402 

5. Conclusion 403 

This study examined AGB estimation using Landsat 8 OLI image, airborne LiDAR data, and 404 

the combination of both in SFR, Malaysia, where three distinctive forest types exist. The 405 

research can be summarized as follows: 406 
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- A number of significant correlations were observed between texture measures from 407 

Landsat 8 OLI image and field observed AGB. Compared with the spectral vegetation 408 

index, the texture measures have more potential for estimating AGB of dense tropical 409 

rainforests, where there are high possibilities of saturation problems.  410 

- The laser penetration variables from airborne LiDAR data performed well in the 411 

prediction of AGB. These variables detected differences in canopy structures in the three 412 

distinctive forest types studied. 413 

- When the variables from Landsat 8 OLI images and airborne LiDAR data were integrated 414 

in the regression model, the estimation accuracy of AGB was improved. The combined 415 

use of airborne LiDAR data and Landsat 8 OLI image for estimating AGB of an old 416 

growth tropical rainforest appeared promising. 417 

While airborne LiDAR data acquisition is currently too expensive for large spatial scale 418 

applications, the deployment of spaceborne LiDAR will lead to potential global application of 419 

LiDAR data.  In the near future, together with the technological improvement, more remote 420 

sensing data (e.g., new spaceborne LiDAR data) will be widely available. The synergistic use of 421 

these remote sensing data deserves intensified attention in future research on AGB estimation in 422 

the tropics. 423 
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