20 research outputs found
Rac and Rho GTPases in cancer cell motility control
Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination
First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase
A new key player in VEGF-dependent angiogenesis in human hepatocellular carcinoma: dimethylarginine dimethylaminohydrolase 1
Electroencephalographic, personality, and executive function measures associated with frequent mobile phone use
Contains fulltext :
55499.pdf (publisher's version ) (Closed access)20 p
Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications
A TaqMan qPCR method for detecting kdr resistance in Aphis gossypii demonstrates improved sensitivity compared to conventional PCR–RFLP
Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus
Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV
AbstractThe inclusive J/ψ nuclear modification factor (RAA) in Pb–Pb collisions at sNN=2.76 TeV has been measured by ALICE as a function of centrality in the e+e− decay channel at mid-rapidity (|y|<0.8) and as a function of centrality, transverse momentum and rapidity in the μ+μ− decay channel at forward-rapidity (2.5<y<4). The J/ψ yields measured in Pb–Pb are suppressed compared to those in pp collisions scaled by the number of binary collisions. The RAA integrated over a centrality range corresponding to 90% of the inelastic Pb–Pb cross section is 0.72±0.06(stat.)±0.10(syst.) at mid-rapidity and 0.58±0.01(stat.)±0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAA are measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/ψ yield originates from charm quark (re)combination in the deconfined partonic medium
Repeated Exposure to Severely Limited Sleep Results in Distinctive and Persistent Physiological Imbalances in Rats
Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=2.76 TeV
AbstractWe present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0–5%, 5–10%, 10–20%, and 20–30% most central events) in Pb–Pb collisions at sNN=2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, −5.0<η<5.5, and employing a special analysis technique based on collisions arising from LHC ‘satellite’ bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles (Nch=17165±772 for the 0–5% most central collisions). From the measured dNch/dη distribution we derive the rapidity density distribution, dNch/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models
