29 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Heterocyclic bibenzimidazole derivatives as topoisomerase I inhibitors

    Get PDF
    A series of 2′-heterocyclic derivatives of 5-phenyl-2,5′-1H-bibenzimidazoles were evaluated for topoisomerase I poisoning activity and cytotoxicity. Topo I poisoning activity was associated with 2′-derivatives that possessed a hydrogen atom capable of hydrogen bond formation, suggesting that the interatomic distances between such hydrogen atoms and the heteroatoms on the adjacent benzimidazole influence activity

    8,9-Methylenedioxybenzo[i]phenanthridines_ Topoisomerase I-Targeting activity and cytotoxicity

    No full text
    Substituted benzo[i]phenanthridines that have incorporated within their structure an 8,9-methylenedioxy group can exhibit topoisomerase I-targeting activity. Structure–activity studies were performed to examine the influence of saturation at the 11,12-positions of several substituted 8,9-methylenedioxybenzo[i]phenanthridines. The activities of these dihydro analogues were compared to those of their unsaturated analogues. In addition, the influence of varying substituents at the 2- and 3-positions within the A-ring of these 8,9-methylenedioxybenzo[i]phenanthridines on their relative potency as topoisomerase I-targeting agents and cell proliferation as determined using the MTT assay was investigated. 2,3-Dimethoxy-8,9 Methylenedioxybenzo[i]phenanthridine and its 11,12-dihydro derivative were among the more potent analogues evaluated with regard to topoisomerase I-targeting activity and cytotoxicity

    TRIUMF resonant ionization laser ion source - Ga, Al and Be radioactive ion beam development

    No full text
    The range of isotopes available at the TRIUMF Isotope Separator Accelerator (ISAC) facility has been greatly enhanced by adding a Resonance Ionization Laser Ion Source (RILIS). A large wavelength range is accessible with the fundamental, second and third harmonic generation of titanium-sapphire laser light. In addition a dedicated laser is available for non-resonant laser ionization. The first on-line beam 62Ga was delivered in Dec. 2004. In general RILIS improves the intensity, purity and emittance of ion beams. 62Ga and 26Al and Be beams have been delivered so far on-line

    In vivo resolution of oligomers with fluorescence photobleaching recovery histograms

    No full text
    Simple independent enzyme-catalyzed reactions distributed homogeneously throughout an aqueous environment cannot adequately explain the regulation of metabolic and other cellular processes in vivo. Such an unstructured system results in unacceptably slow substrate turnover rates and consumes inordinate amounts of cellular energy. Current approaches to resolving compartmentalization in living cells requires the partitioning of the molecular species in question such that its localization can be resolved with fluorescence microscopy. Standard imaging approaches will not resolve localization of protein activity for proteins that are ubiquitously distributed, but whose function requires a change in state of the protein. The small heat shock protein sHSP27 exists as both dimers and large multimers and is distributed homogeneously throughout the cytoplasm. A fusion of the green fluorescent protein variant S65T and sHSP27 is used to assess the ability of diffusion rate histograms to resolve compartmentalization of the 2 dominant oligomeric species of sHSP27. Diffusion rates were measured by multiphoton fluorescence photobleaching recovery. Under physiologic conditions, diffusion rate histograms resolved at least 2 diffusive transport rates within a living cell potentially corresponding to the large and small oligomers of sHSP27. Given that oligomerization is often a means of regulation, compartmentalization of different oligomer species could provide a means for efficient regulation and localization of sHsp27 activity
    corecore