33 research outputs found
Test-retest reproducibility of a multi-atlas automated segmentation tool on multimodality brain MRI
The increasing use of large sample sizes for population and personalized medicine requires high-throughput tools for imaging processing that can handle large amounts of data with diverse image modalities, perform a biologically meaningful information reduction, and result in comprehensive quantification. Exploring the reproducibility of these tools reveals the specific strengths and weaknesses that heavily influence the interpretation of results, contributing to transparence in science. We tested-retested the reproducibility of MRICloud, a free automated method for whole-brain, multimodal MRI segmentation and quantification, on two public, independent datasets of healthy adults. Results The reproducibility was extremely high for T1-volumetric analysis, high for diffusion tensor images (DTI) (however, regionally variable), and low for resting-state fMRI. Conclusion In general, the reproducibility of the different modalities was slightly superior to that of widely used software. This analysis serves as a normative reference for planning samples and for the interpretation of structure-based MRI studies.910FAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo2107/13102-7; 2013/07559-
Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool
<div><p>Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer’s disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.</p></div
Recommended from our members
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility
Quantification of tissue magnetic susceptibility using MRI offers a non-invasive measure of important tissue components in the brain, such as iron and myelin, potentially providing valuable information about normal and pathological conditions during aging. Despite many advances made in recent years on imaging techniques of quantitative susceptibility mapping (QSM), accurate and robust automated segmentation tools for QSM images that can help generate universal and sharable susceptibility measures in a biologically meaningful set of structures are still not widely available. In the present study, we developed an automated process to segment brain nuclei and quantify tissue susceptibility in these regions based on a susceptibility multi-atlas library, consisting of 10 atlases with T1-weighted images, gradient echo (GRE) magnitude images and QSM images of brains with different anatomic patterns. For each atlas in this library, 10 regions of interest in iron-rich deep gray matter structures that are better defined by QSM contrast were manually labeled, including caudate, putamen, globus pallidus internal/external, thalamus, pulvinar, subthalamic nucleus, substantia nigra, red nucleus and dentate nucleus in both left and right hemispheres. We then tested different pipelines using different combinations of contrast channels to bring the set of labels from the multi-atlases to each target brain and compared them with the gold standard manual delineation. The results showed that the segmentation accuracy using dual contrasts QSM/T1 pipeline outperformed other dual-contrast or single-contrast pipelines. The dice values of 0.77 ± 0.09 using the QSM/T1 multi-atlas pipeline rivaled with the segmentation reliability obtained from multiple evaluators with dice values of 0.79 ± 0.07 and gave comparable or superior performance in segmenting subcortical nuclei in comparison with standard FSL FIRST or recent multi-atlas package of volBrain. The segmentation performance of the QSM/T1 multi-atlas was further tested on QSM images acquired using different acquisition protocols and platforms and showed good reliability and reproducibility with average dice of 0.79 ± 0.08 to manual labels and 0.89 ± 0.04 in an inter-protocol manner. The extracted quantitative magnetic susceptibility values in the deep gray matter nuclei also correlated well between different protocols with inter-protocol correlation constants all larger than 0.97. Such reliability and performance was ultimately validated in an external dataset acquired at another study site with consistent susceptibility measures obtained using the QSM/T1 multi-atlas approach in comparison to those using manual delineation. In summary, we designed a susceptibility multi-atlas tool for automated and reliable segmentation of QSM images and for quantification of magnetic susceptibilities. It is publicly available through our cloud-based platform (www.mricloud.org). Further improvement on the performance of this multi-atlas tool is expected by increasing the number of atlases in the future
Brain parcellation scheme of the JHU multiple atlases.
<p>Multiple granularity levels (L1 to L5) are shown. Level 5 (L5) has the highest granularity and defines 286 regions. An anatomy-based hierarchical relationship was established to generate super-structures and lower-granularity parcellation, as shown in L1–L4.</p
Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain
<div><p>In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure.</p></div
Thigh-length compression stockings and DVT after stroke
Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
Differences in regional volumes between AD and controls at each granularity level.
<p>The colors code the ratio of volumes in AD/controls in regions of significant difference (P value<0.05, Bonferroni-corrected). Blue (ratio <1) represents regions of atrophy in AD, while green/yellow/red are regions that are bigger in AD, such as the ventricles.</p