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1 | HIGHLIGHTS

e Addressing the methodological reproducibility of imaging post-
processing is essential for planning and data interpretation.

e MRICloud showed reproducible results for whole-brain, multi-
modal, structure-based quantification.

e Structural analyses (volumetric and diffusion tensor images) show
higher reproducibility than rsfMRI analysis.

Abstract

Introduction: The increasing use of large sample sizes for population and personal-
ized medicine requires high-throughput tools for imaging processing that can handle
large amounts of data with diverse image modalities, perform a biologically mean-
ingful information reduction, and result in comprehensive quantification. Exploring
the reproducibility of these tools reveals the specific strengths and weaknesses
that heavily influence the interpretation of results, contributing to transparence in
science.

Methods: We tested-retested the reproducibility of MRICloud, a free automated
method for whole-brain, multimodal MRI segmentation and quantification, on two
public, independent datasets of healthy adults.

Results: The reproducibility was extremely high for T1-volumetric analysis, high for
diffusion tensor images (DTI) (however, regionally variable), and low for resting-state
fMRI.

Conclusion: In general, the reproducibility of the different modalities was slightly
superior to that of widely used software. This analysis serves as a normative refer-

ence for planning samples and for the interpretation of structure-based MRI studies.

KEYWORDS
automated segmentation, multimodality brain MRI, reproducibility, test-retest

2 | INTRODUCTION

Integrative analysis of multiple MRI contrasts is increasingly popular
because the power to discriminate populations with a single modal-
ity is often limited. Typically, diseases are characterized by changes
with small effect size in multiple domains; rarely, a single specific/
sensitive feature fully characterizes individuals. While analyzing

multiple MRI features potentially increases the power of phenotypic
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characterization, it aggravates statistical problems related to multi-
ple comparisons. Methodologies designed to reduce the dimensions
of information are imperative. A well-known strategy is to aggre-
gate voxels that represent a given structure in regions of interest
(ROIs), resulting in a biologically comprehensive quantification. As
manually drawing ROls creates practical challenges (Tae, Kim, Lee,
Nam, & Kim, 2008), automated methods for imaging segmentation
of multiple contrasts represent a viable strategy (Faria, Liang, Miller,
& Mori, 2017; Miller, Faria, Oishi, & Mori, 2013; Mori, Oishi, Faria, &
Miller, 2013).

MRICloud (www.MRICloud.org) (Mori et al., 2016) is a recently
developed web-based tool with which to perform automated seg-
mentation and quantification of multiple MRI modalities. MRICloud
provides a platform to characterize anatomy (using T1 high-resolu-
tion-weighted images for volumetric analysis), white matter (using
diffusion tensor images [DTI]), and resting-state functional connec-
tivity, built on structure-based analysis. MRICloud can analyze all
these modalities in the same anatomical framework, thus facilitating
the integration of information from multiple domains in a biologically
meaningful set of structures. In addition, MRICloud is a widely avail-
able tool, which is free online, completely automated and, therefore,
meets the requirements for a neuroimaging tool that is widely appli-
cable to large-scale multimodal processing.

The reliability and accuracy of MRICloud for whole-brain seg-
mentation, based on DTI or T1-WIs, have been extensively tested
and validated (Ceritoglu et al., 2009; Liang et al., 2015; Oishi et al.,
2008, 2009; Tang et al., 2015; Wu et al., 2016). A few other soft-
ware that perform high-resolution T1-based automated segmenta-
tion, including FreeSurfer (Fischl, 2012), FSL (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012), SPM (Penny, Friston, Ashburner,
Kiebel, & Nichols, 2007), ANTS (Avants et al., 2011), also underwent
detailed reliability analysis, including testing the robustness of the
respective pipelines to technical factors and artifacts (Ceritoglu
et al.,, 2009; Han et al., 2006; Jovicich et al., 2009; Tustison et al.,
2014; Ye et al., 2018). Most of these segmentation tools perform
admirably when compared with the “gold standard” manual segmen-
tation of selected structures, particularly when tested by the devel-
opers, in healthy subjects. A different aspect, less often reported, is
the reproducibility of such technologies, over the entire brain, par-
ticularly when applied to DTl and resting-state fMRI measurements,
which has raised concerns about the interpretation of the results of
these methods in the past (Huang et al., 2012; Morey et al., 2010;
Shou et al., 2013; Vollmar et al., 2010).

Here, we assess the test-retest reproducibility of MRICloud
structural quantification for different MRI modalities (T1-based
volumetric analysis, DTI for automated quantification of fractional
anisotropy [FA] and mean diffusivity [MD], and resting-state fMRI
[rsfMRI] synchrony). We compare the MRICloud reproducibility
with that of other well-established methods, such as FreeSurfer and
CONN-SPM. Relevant information about biomarkers, particularly in
longitudinal studies focused on subtle conditions, can be provided
only by reliable neuroimaging tools and reproducible pipelines. It is
the responsibility of the developers to provide users with the level of

reproducibility of their tools, as the unknown reproducibility hinders

the validation and the interpretation of the results.

3 | MATERIALS AND METHODS

3.1 | Participants and images

We used the two independent and public datasets to measure the

reproducibility of MRICloud multimodality results:

e Kirby21, the “multimodal MRI reproducibility resource”
(Landman et al., 2011). Kirby21 is a public dataset available in the
Neuroimaging Informatics Tools and Resources Clearinghouse
(www.nitrc.org). This database consists of 21 healthy volunteers
with no history of neurologic diseases (11 male, 22-61 years old),
scanned twice in a day, on a 3T Phillips Achieva Scanner. One
subject (#8) was excluded because the original DTI scan was not
available. A brief description of the image protocol follows: (a)
T1-weighted images: sagittal orientation, matrix 240 x 256 mm,
voxel size 1 x 1 x 1.2 mm®, TR/TE/TI 6,300/3.1/842 ms, flip
angle 8°; (b) diffusion tensor images (DTI): spin echo sequence,
reconstructed matrix 256 x 256 mm, voxel size (interpolated to)
2.2 x2.2x2.2mmd, 65 slices, TE/TR 67/6,181 ms, flip angle 90°,
32 gradient directions, b-factor = 700 s/mm?; (c) resting-state
functional MRI (rsfMRI): EPI sequence, voxel size 3 x 3 x 3 mm?®,
slice gap 1 mm, TR/TE 2,000/30 ms, flip angle 75°, voxel matrix
80 x 80 x 37, 210 frames per run.

e Human Connectome Project (HCP) test-retest dataset, which is
a subset of the 1,200 individual MRIs, made public by HCP (Van
Essen et al., 2013). It includes MRI test-retest MRIs of 45 healthy
individuals (13 male, 22-35 years old), scanned in 3T machines,
in variable intervals (4.7 £ 2 months interval, minimum = 1 month,
maximum = 11 months). Two individuals have no rest-retest DTI.
Note that the long retest interval increases likelihood of biological
influences in the test-retest analysis, although these effects are
presumably small in young healthy individuals. A brief descrip-
tion of the image protocol follows: (a) T1-WI: axial orientation,
FOV = 224 x 224 mm, voxel size 0.7 mm?® (isotropic), TR/TE/TI
2,400/2.14/1,000 ms, flip angle 8°; (b) DTI: 18 b0 images, 90 gra-
dient directions, b = 3,000 s/mm?, TE/TR 89/5,520 ms, 1.25 mm
voxel (isotropic); (c) rsfMRI: EPI sequence, voxel 2 mm? (isotropic),
TR/TE 720/33.1 ms, flip angle 52°, 72 slices, 1,200 frames per run.

3.2 | Image processing

3.2.1 | Multimodality processing with MRICloud

The images were automatically postprocessed, segmented, and
quantified in MRICloud (www.MRICloud.org) (Mori et al., 2016).
Briefly, the process for segmenting the T1-WI, used for volumetric
analysis, involves orientation and homogeneity correction; two-level
brain segmentation (skull-stripping, then whole brain); image map-
ping based on a sequence of linear, nonlinear algorithms, and large
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deformation diffeomorphic mapping (LDDMM); and a final step of
multi-atlas labeling fusion (MALF) (Tang et al., 2013), adjusted by
PICSL (Wang & Yushkevich, 2013). Please read (Tang et al., 2015;
Wu et al., 2016) for technical details. As for the multi-atlas library, we
chose “Adult_22_55yrs_283Labels_26atlases_M2_252 _V9B” under
MRICloud atlas choices. This atlaset contains 26 healthy individu-
als, 22-55 years old, demographically close to our cohort, as recom-
mended for atlas mapping (Ye et al., 2018).

For the DTI, the tensor reconstruction and quality control fol-
lowed the algorithm used by DtiStudio (www.MRIStudio.org). The
automated DTl segmentation was similar to that used for T1-WiIs, ex-
cept for the use of complementary contrasts (mean diffusivity [MD],
fractional anisotropy [FA], and eigenvector [fiber orientation]) and
a diffeomorphic likelihood fusion algorithm (Tang et al., 2014) for
multi-atlas mapping. Please read (Ceritoglu et al., 2009) for techni-
cal details. We used the only atlas library available for DTI mapping
in MRICloud: “Adults_168labels_12atlases_V1,” which contains 12
healthy individuals, 20-50 years old.

For the rsfMRI postprocessing (Faria et al., 2012), the T1-WI and
the respective segmentations obtained as described above were
coregistered to the motion and slice timing-corrected, resting-state
dynamics. Time courses were extracted from all the cortical and sub-
cortical gray matter regions defined in the atlases and detrended,
regressed for motion and physiological nuisance (Behzadi, Restom,
Liau, Liu, 2007). Intensity and motion “outliers” were extracted with
ART (https://www.nitrc.org/projects/artifact_detect). Seed-by-seed
correlation matrices were obtained from the “nuisance-corrected”
time courses, and z-transformed by the Fisher's method.

After the multimodal brain segmentation and quantification,
each individual, in each session, was represented by a vector of
image features. The image features considered in this study were
226 structural volumes from T1-WIs processing (listed in Table 1),
97 white matter structural FA, and 97 white matter structural MD
measures from DTl processing (listed in Table 2), and 1,431 pairwise,
resting-state z-correlations between 54 gray matter seeds from rs-
fMRI (listed in Table 3).

3.2.2 | T1-WIs volumetric analysis with FreeSurfer

Volumes of Kirby21 cortical labels and the deep gray matter were
obtained from FreeSurfer v.5.3, for further comparison of reliabil-
ity with MRICloud. Briefly, images are aligned to the Talairach and
Tournoux atlas, corrected for magnetic field inhomogeneity, skull-
stripped, and the tissues are classified as gray matter, white mat-
ter, or CSF. Next, the white surface (the interface between gray and
white matter) and the pial surfaces are estimated by triangle meshes
and smoothed with a Gaussian filter of 10 mm FWHM (Fischl & Dale,
2000). Cortical thickness is calculated as the shortest distance be-
tween the pial and white surface at each vertex across the cortical
mantle. The cortical volume is the multiplication of cortical thick-
ness and surface area. The volumes for subcortical regions are cal-
culated as well (Fischl et al., 2002). For comparison of reliability, we
determined the correspondence between MRICloud and FreeSurfer
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labels (listed in Table 1), which is feasible since both methods label

according to structural anatomy.

3.2.3 | rsfMRI analysis with SPM CONN toolbox

We used the SPM CONN toolbox, version 17e, to preprocess and
perform first-level statistics of Kirby21 rsfMRI data, and further
compared the reliability of these results with those from MRICloud.
The CONN toolbox is the most widely used tool for processing rs-
fMRI and uses a combination of SPM12 and native-implemented
functions. The preprocessing was attuned to keep the rsfMRI in the
native space and used the default CONN parameters for slice-time
correction and realignment. As in the MRICloud pipeline, ART identi-
fied the outlier scans (97th percentiles in a normative sample). The
effect of the rest model and its first-order derivative were used as
first-level covariates (individual regressors). Sequentially, the pro-
cessed functional images were detrended and band-pass-filtered
(0.008-0.09 Hz). After tissue segmentation and skull-stripping,
the T1-WIs and the respective parcellation maps obtained from
MRICloud were brought to the rsfMRI space. The use of the same
anatomic labels enabled a direct comparison between SPM CONN
and MRICloud seed-by-seed correlations.

Although there are descriptions of automated white matter par-
cellations using cortical-parcellation-based strategies and fiber clus-
tering parcellation (Zhang et al., 2019), to the best of our knowledge,
MRICloud is the only automated pipeline available for whole-brain,
DTI structure-based analysis. Therefore, the reproducibility of DTI
regional quantification outputted from MRICloud was not directly
compared with that from other software.

3.3 | Statistical analysis

3.3.1 | Test-retest reproducibility

To assess the test-retest reliability of the different metrics in each
region of interest, we used the intraclass correlation coefficient (ICC)
(Shrout & Fleiss, 1979). To access a global measure of the reproduc-
ibility for a given modality, we used the image intraclass correlation
coefficient (12C2) (Shou et al., 2013), which takes in account the total
variability of the data. Because I12C2 is less sensitive to regions with
low variability, it tends to be lower, and more realistic, than the aver-
age of regional ICCs.

A problem that cannot be intuitively solved by looking at 12C2
or ICCs is whether the global individual pattern of image features is
reproducible. This “fingerprint” problem has recently been explored
in neuroimaging (Finn et al., 2015; Liu, Liao, Xia, & He, 2018; Mars
et al,, 2018). Assuming that the MRI data itself are reproducible
(which is a valid assumption for structural data, such as T1-based
volumes), if the postprocessing and quantification tool is reliable, a
given individual will be closer to him/herself rather than to someone
else in the space of the image features.

In order to explore this idea, we used principal component anal-
ysis (PCA) to reduce the dimensionality of the data in each modality.
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TABLE 2 |ICCs for regional fractional anisotropy (FA) and mean diffusivity (MD), outputted by MRICloud, using Kirby21 and HCP

Kirby 21 HCP
ICC for FA ICC for MD ICC for FA ICC for MD

MRICloud L R L R L R L R

Superior parietal gyrus® 0.885 0.880 0.812 0.885 0.753 0.725 0.696 0.811
Cingulate gyrus? 0.808 0.709 0.878 0.938 0.804 0.796 0.800 0.824
Superior frontal gyrus® 0.925 0.850 0.901 0.856 0.796 0.669 0.489 0.474
Middle frontal gyrus? 0.842 0.809 0.883 0.788 0.798 0.635 0.432 0.625
Inferior frontal gyrus? 0.861 0.902 0.785 0.757 0.873 0.649 0.411 0.624
Precentral gyrus® 0.887 0.865 0.804 0.902 0.872 0.767 0.815 0.783
Postcentral gyrus® 0.959 0.928 0.918 0.894 0.712 0.735 0.774 0.816
angular gyrus® 0.774 0.863 0.726 0.883 0.732 0.710 0.691 0.773
Precuneus® 0.869 0.799 0.883 0.914 0.814 0.782 0.802 0.851
Cuneus® 0.907 0.764 0.832 0.777 0.851 0.756 0.795 0.822
Lingual gyrus® 0.625 0.691 0.655 0.753 0.762 0.715 0.615 0.744
Fusiform gyrus® 0.819 0.725 0.676 0.681 0.727 0.656 0.782 0.765
Superior occipital gyrus® 0.908 0.875 0.892 0.844 0.842 0.840 0.897 0.856
Inferior occipital gyrus® 0.825 0.839 0.506 0.740 0.825 0.707 0.855 0.769
Middle occipital gyrus® 0.888 0.841 0.785 0.795 0.821 0.723 0.869 0.829
Superior temporal gyrus® 0.416 0.604 0.623 0.727 0.851 0.714 0.775 0.776
Inferior temporal gyrus® 0.724 0.648 0.491 0.558 0.821 0.892 0.802 0.811
Middle temporal gyrus? 0.895 0.798 0.770 0.763 0.784 0.763 0.774 0.758
Lateral fronto-orbital gyrus® 0.884 0.865 0.681 0.617 0.868 0.602 0.612 0.695
Middle fronto-orbital gyrus® 0.786 0.787 0.512 0.406 0.713 0.785 0.687 0.635
Supramarginal gyrus® 0.896 0.937 0.875 0.885 0.876 0.770 0.766 0.794
rectus gyrus® 0.746 0.753 0.823 0.716 0.635 0.744 0.675 0.602
Insula® 0.847 0.887 0.964 0.671 0.804 0.796 0.777 0.734
Cerebellum 0.790 0.901 0.936 0.901 0.813 0.750 0.733 0.751
Corticospinal tract 0.897 0.858 0.741 0.659 0.886 0.897 0.886 0.893
Inferior cerebellar peduncle 0.436 0.649 0.478 0.588 0.800 0.853 0.836 0.819
Medial lemniscus 0.735 0.626 0.621 0.595 0.927 0.912 0.831 0.749
Superior cerebellar peduncle 0.642 0.781 0.605 0.607 0.797 0.756 0.791 0.775
Cerebral peduncle 0.817 0.814 0.785 0.404 0.921 0.935 0.714 0.880
Anterior limb internal capsule 0.755 0.659 0.653 0.616 0.891 0.803 0.552 0.797
Posterior limb internal capsule 0.818 0.846 0.427 0.716 0.868 0.895 0.641 0.814
Retro lenticular internal capsule 0.790 0.875 0.525 0.811 0.897 0.831 0.711 0.739
Posterior thalamic radiation 0.848 0.863 0.692 0.869 0.892 0.907 0.829 0.758
Anterior corona radiata 0.952 0.902 0.774 0.625 0.873 0.810 0.424 0.634
Superior corona radiata 0.910 0.941 0.715 0.861 0.924 0.875 0.683 0.729
Posterior corona radiata 0.928 0.886 0.647 0.838 0.867 0.950 0.828 0.894
Cingulum 0.915 0.907 0.750 0.730 0.878 0.810 0.679 0.859
Fornix stria terminalis 0.805 0.843 0.808 0.707 0.841 0.818 0.677 0.815
Superior longitudinal fasciculus 0.879 0.926 0.544 0.772 0.879 0.876 0.586 0.707
Superior fronto-occipital 0.760 0.851 0.822 0.872 0.760 0.677 0.822 0.453

fasciculus
Inferior fronto-occipital 0.828 0.912 0.641 0.453 0.891 0.848 0.710 0.720
fasciculus

(Continues)



REZENDE ET AL.

TABLE 2 (Continued)

B H d B h . 0 11 of 22
rain an enavior Wl LEYJ—

Open Access,

Kirby 21 HCP

ICC for FA ICC for MD ICC for FA ICC for MD
MRICloud L R L R L R L R
Sagittal stratum 0.889 0.861 0.588 0.823 0.819 0.786 0.665 0.756
External capsule 0.802 0.860 0.455 0.710 0.854 0.758 0.477 0.684
Uncinated fasciculus 0.638 0.936 0.696 0.767 0.807 0.881 0.785 0.811
Pontine crossing tract 0.723 0.882 0.693 0.602 0.881 0.905 0.858 0.866
Middle cerebellar peduncle 0.677 0.775 0.312 0.284 0.829 0.757 0.845 0.864
Fornix 0.893 0.718 0.946 0.703 0.774 0.875 0.602 0.676
Genu corpus callosum 0.896 0.923 0.574 0.617 0.901 0.850 0.554 0.641
Body of the corpus callosum 0.878 0.914 0.922 0.830 0.898 0.900 0.598 0.828
Splenium corpus callosum 0.880 0.919 0.736 0.894 0.866 0.920 0.686 0.770

Abbreviations: HCP, Human Connectome Project; ICC, intraclass correlation coefficients.

White matter labels beneath the gray matter.

The first three principal components, which are linear combinations
of the features in question, are those that explain most of the data
variability. The distances across different subjects in the 3D PCA
plots (indicated by circles with different colors in our figures) reflect
anatomical variability among normal brains, as well as the measure-
ment variability. Through the test-retest pairs (indicated by circles of
same colors in our figures), one can estimate the size of the measure-
ment variability, that is, the precision of the measurement, with re-
spect to the anatomical variability of the population. We also ranked
the Euclidean distance among subjects in the three-dimensional PCA
space. The lowest rank of 1 represents a pair of individuals that are
closest in the feature space (i.e., a pair with the lowest variability). If
the measurement variability is lower than the anatomical variability,
a test-retest pair has a low score, ideally, 1. We judged “correct clas-
sification” when the two closest neighbors were the first and second
scans of the same subject (the “test-retest” pair), and “misclassifica-
tion” otherwise.

Finally, we checked for significant differences in the diverse met-
rics between groups (test and retest) using Wilcoxon, corrected for
multiple comparisons with false discovery rate. We also calculated
the percentage of difference between the test and retest metrics,
as ([test metric + retest metric]/test metric) * 100. Furthermore, al-
though this study is not designed to test the reliability of the seg-
mentation itself, we calculated the Dice index between each pair
(test-retest) of parcels obtained by the T1 and DTI processing in
MRICloud, as a sanity check. Note that the Dice was the only metric
calculated not in the native space, but in a MNI space, to ameliorate
differences in the head position between the test-retest scans.

3.3.2 | Power analysis: illustrating the effect of the
data variability

Power analysis was used to illustrate the effects of data vari-
ability (both biological and technical) on the automated imaging

quantification. For a proof of concept, we chose two regions (one
with a large ICC and the other with a low ICC), from the volumetric
T1-based analysis and from the DTl analysis. We calculated the sam-
ple size necessary to detect group differences at an alpha of 0.05
and a power of 0.8, using GPOWER (http://www.gpower.hhu.de/).
The sample size that resulted was inversely proportional to the data

variability, which was inversely proportional to the ICC.

4 | RESULTS

4.1 | Volumetric (T1-based) test-retest reliability

The global 12C2 coefficients for the MRICloud volumetric analy-
sis were very high (1 indicating perfect agreement): HCP dataset:
0.989 (confidence interval, Cl: 0.987-0.992) and 0.936 (Cl: 0.870-
0.998), Kirby21 dataset: 0.988 (Cl: 0.982-0.991) and 0.997 (CI:
0.995-0.999), for the cerebral cortex and deep gray matter, respec-
tively (Figure 1). The ROIs showed consistently high ICCs (Table 1,
Figure 2), including those in the white matter, which we were able to
obtain because MRICloud performs whole-brain parcellation. Only a
few small parcels, primarily in the brainstem, had ICCs below 0.9, and
no region had an ICC below 0.8.

Compared to MRICloud, the 12C2s for Kirby21 were slightly
lower for the FreeSurfer results: 0.920 (Cl: 0.871-0.951) for the ce-
rebral cortex and 0.967 (Cl: 0.933-0.988) for the deep gray matter.
The regional ICCs were also lower, in general (Figure 2, bottom), with
a few regions, particularly at the deep gray matter, showing an ICC
of approximately 0.8.

The three-dimensional PCA plot (Figure 3, top) for Kirby21 data
shows that the measurement variability was higher for the results of
FreeSurfer (average Euclidian distance between the test-retest pair
0.043 £ 0.025) compared to those from MRICloud (average Euclidian
distance between the test-retest pair 0.016 + 0.007 for Kirby21 and
0.016 + 0.010 for HCP), while still lower than that of the anatomical
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TABLE 3 Averaged ICCs of seed-by-

seed correlations outputted by the rsfMRI

processed with MRICloud (using Kirby21
and HCP) and SPM CONN (using Kirby21)

Open Access,

Structure
Angular gyrus
Cuneus
Fusiform gyrus

Rectus gyrus

Lingual gyrus

Precentral gyrus

Precuneus

cortex

REZENDE ET AL.
ICC for SPM
ICC for Mricloud CONN
Kirby 21 HCP Kirby 21
L R L R L R
0.387 0.376 0482 0.527 0155 0.264
0433 0438 0.392 0417 0153 0.080
0.342 0419 0.253 0.339 0.163 0.249
0.384 0.340 0.444 0458 0.150 0.077
Inferior frontal gyrus/pars opercularis 0.243  0.369 0.470 0432 0.228 0.238
Inferior frontal gyrus/pars orbitalis 0.283 0413 0417 0449 0.092 0.208
Inferior frontal gyrus/pars triangularis 0.302 0367 0350 0442 0.183 0.103
Inferior occipital gyrus 0.356 0.355 0.381 0.396 0.156 0.282
Inferior temporal gyrus 0.329 0.387 0.362 0.446 0.130 0.107
0.374 0.394 0.334 0.304 0.219 0.150
Middle frontal gyrus 0.317 0418 0435 0.532 0.270 0.216
Middle frontal gyrus (dorsolateral 0.258 0.378 0.421 0460 0.124 0.216
prefrontal cortex)
Middle occipital gyrus 0.332 0447 0.342 0.338 0.189 0.246
Middle temporal gyrus 0.323 0400 0443 0446 0.276 0.129
Middle temporal gyrus/pole 0402 0.337 0465 0.397 0.116 0.025
Postcentral gyrus 0.388 0.380 0.327 0.366 0.176 0.166
Posterior cingulate cortex 0.363 0.364 0.385 0.189 0.147 0.213
0.424 0.378 0.333 0.393 0.223 0.164
0425 0443 0412 0386 0135 0.270
Superior frontal gyrus 0.372 0406 0.415 0.444 0.133 0.185
Superior frontal gyrus/pole 0.413 0416 0.280 0.388 0.012 0.000
Superior frontal gyrus/prefrontal 0.356 0.328 0431 0469  0.195 0.202
Superior occipital gyrus 0.425 0.434 0.030 0.188 0.253 0.204
Superior parietal lobule 0.284 0.261 0.387 0.366 0.229 0.128
Superior temporal gyrus 0.364 0.350 0.333 0.383 0.240 0.178
Superior temporal gyrus/pole 0.413 0.391 0456 0.399 0.171 0.185
0.316 0.382 0445 0437 0.233 0.178

Supramarginal gyrus

Abbreviations: HCP, Human Connectome Project; ICC, intraclass correlation coefficients.

variability in both cases. Similar results were obtained using the
deep gray matter volumes (Figure 4, top). Again, the measurement
variability for deep gray matter volumes was higher for the results
of FreeSurfer (average Euclidian distance between the test-retest
pair 0.042 + 0.033) compared to those from MRICloud (average
Euclidian distance between the test-retest pair 0.028 + 0.017 and
0.028 + 0.073 for Kirby21 and HCP respectively), while still lower
than that of the anatomical variability in both cases.

This idea was reinforced by the ranked distance matrix (Figures
3 and 4, bottom). For the results of MRICloud, individuals in the
test-retest pair were always the closest (ranked distance of 1) when

using cortical volumes (Figure 3, bottom right), or almost always

the closest (except by one case), when using the deep gray matter
volumes (Figure 4, bottom right). There were 7 “misclassifications”
(i.e., the closest individual in the first scan was not him/herself in
the second scan) when using the volumetric results of FreeSurfer,
both for the superficial and for the deep gray matter (Figures 3 and
4, bottom left).

There were no significant differences in regional volumes, as
outputted by MRICloud, between the test and the retest sets. The
average difference between the test and retest volumes was 1.76%
for Kirby21, and 2.8% for HCP. The Dice indices between pairs
(test-retest) of parcels were high 0.814 + 0.141 for Kirby21 and
0.8 +0.097 for HCP.
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4.2 | DTI test-retest reliability

The global 12C2 coefficients for the MRICloud analysis of the frac-
tional anisotropy (FA) and mean diffusivity (MD) were as follows:
Kirby21: 0.836 (Cl: 0.798-0.869) and 0.787 (Cl: 0.735-0.851), re-
spectively; HCP: 0.844 (Cl: 0.751-0.892) and 0.733 (Cl: 0.666-
0.793), respectively (Figure 1). The regional ICCs (Table 2, Figure 5)
were higher for FA than for MD. The FA ICCs were virtually higher
than 0.8, while, for MD, a few regions scored below this level, par-
ticularly in the brainstem. In contrast to the volumetric analysis,
there was more variation on the ICCs, with some areas scoring high
(ICC > 0.9) and others low (ICC < 0.5).The cerebellar peduncles had
the lowest ICCs.

Although higher than in the volumetric analysis, the measure-
ment variability for Kirby21 FA and MD (the distance between the

Kirby21 4

MC

T T T T T T T T
= 2 3 = g 2 g 2
- I I © °© = = 2
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1 5 o) = % 2 2 ()
= g b 3 o A a s
- <
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~ 2 o} |
- 3‘ =
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rest-retest individuals, or dots with the same color in the PCA plots
of Figure 6) was, on average, lower than the anatomical variability
(the distance among different individuals). The measurement vari-
ability was higher for MD (average Euclidian distance between the
test-retest pair 0.147 + 0.079 and 0.119 + 0.072 for Kirby21 and
HCP, respectively) than for FA (average Euclidian distance between
the test-retest pair 0.060 + 0.039 and 0.057 + 0.032 for Kirby21
and HCP, respectively). Again, the ranked distance matrices offered
a different view of the same findings. Using the FA metrics, individ-
uals in a test-retest pair were the closest (ranked distance of 1) in
the majority of cases (Figure 6, bottom right), although there were
9 “misclassifications” (i.e., the closest individual in the first scan was
not him/herself in the second scan). Using MD, individuals in the
test-retest pair were often not the closest (Figure 6, bottom left, 19
“misclassifications”).

ICC coefficient

|
0 1

FIGURE 2 Color-coded regional ICCs for the volumetric outputs of MRICloud (MC) and FreeSurfer (FS), in two independent datasets

(Kirby21 and HCP), overlaid on a representative brain
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FIGURE 3 Top: 3D PCA plot created with the volumes of Kirby21 cortical areas, outputted by MRICloud (MC) and FreeSurfer (FS).
Individuals are color-coded, that is, the same color represents a “test-retest” pair. Bottom: matrix of ranked distance between individuals
in the three-dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test-retest pair was scored 1
(dark blue). Test-retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than him/herself in the second
scan) are framed in red

There was no significant c-jlfference in FA or MD between the 4.3 | rsfMRI test-retest reliability
test and the retest sets. The difference between the test and retest
metrics was 0.64% for FA and 1.79% for MD, in Kirby21, and 0.5% The rsfMRI showed the lowest global 12C2 and regional ICCs among
for FA and 1.9% for MD, in HCP. The Dice indices between pairs all the tested modalities. The global 12C2 for the MRICloud outputs
(test-retest) of parcels were high (0.896 + 0.05 and 0.838 + 0.066 (z-transformed correlation among pairs of cortical seeds) was 0.437

for Kirby21 and HCP, respectively). (ClI: 0.337-0.530) in HCP and 0.403 (CI: 0.309-0.507) in Kirby21.
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FIGURE 4 Top: 3D PCA plot created with the volumes of the Kirby21 deep gray matter areas, outputted by MRICLoud (MC) and
FreeSurfer (FS). Individuals are color-coded; that is, the same color represents a “test-retest” pair. Bottom: matrix of ranked distance
between individuals in the three-dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test-retest
pair was scored 1 (dark blue). Test-retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than to him/

herself in the second scan) are framed in red

For the SPM CONN outputs, the 12C2 was 0.227 (Cl: 0.164-0.293)
in Kirby21 (Figure 1). The ICC for a given label was calculated as
the mean of the ICCs for correlations between that given seed to
each other seed (Table 3). The maximum ICC for a parcel using the
MRICloud outputs did not exceed 0.6, with the majority of ICCs fluc-
tuating around 0.4 (Figure 7). For the SPM CONN processing, the
maximum ICC did not exceed 0.5, with the majority of ICCs fluctuat-
ing around 0.25.

The measurement variability, or the distance among test-retest
pairs (same color dots) in the PCA plots created with the pairwise z-
rsfMRI correlations (Figure 8, top), was lower, on average, than the
anatomical/functional variability, or the distance among different in-
dividuals, although the variability was seemingly higher than that ob-
tained for volumes or DTl metrics.The ranked distance among Kirby21
individuals (Figure 8, bottom) showed predominantly “misclassifica-
tions” (the closest individual in the first scan was not him/herself in
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FIGURE 5 Color-coded regional ICCs for the DTl outputs of MRICloud (FA, fractional anisotropy, MD, mean diffusivity) in two
independent datasets (Kirby21 and HCP), overlaid on a representative brain

the second scan): 15 for MRICloud, 15 for CONN-SPM. The individual
variability was still lower for MRICloud (average Euclidian distance
between the test-retest pair 0.163 + 0.093 and 0.134 + 0.090 for
Kirby21 and HCP, respectively) compared to CONN-SPM (average
distance between the test-retest pair 0.175 + 0.131).

There were no significant differences in the outputs of MRICloud

between the test and the retest sets.

4.4 | Power

The power analysis illustrated the effects of data variability on the
automated imaging quantification. For proof of concept, we chose
regions with the highest and the lowest test-retest reliability, as
measured by ICCs. The power analysis (Table 4) showed that the
volumetric data were very stable, meaning that there is a small ef-
fect size among scan sets and that thousands of subjects would be
needed to detect differences between them. The results are even
more drastic for regions with a high ICC (e.g., precentral gyrus > glo-
bus pallidus). For the DTl analysis, here represented by the fractional
anisotropy, the results were the same for highly reproducible areas
(e.g., projection fibers at the pons level), namely, a small effect size
between examinations, and a large sample needed to detect dif-
ferences between them. However, as the range of ICCs was wider
compared to volumes in areas with low ICCs (e.g., inferior cerebellar

peduncle), the effect size between scans was relatively high (0.69)

and less than 100 patients would be needed to detect differences
between the scan sets. As this uses a test-retest design, these dif-
ferences are technical, rather than biological.

5 | DISCUSSION

We test-retested an automated web-based tool (MRICloud) that
performs segmentation and quantification of multimodality MRI
(volume from T1-WIs and FA, and MD from DTI and rsfMRI seed-
by-seed synchrony). The reproducibility rivaled, or was slightly su-
perior, to that from other well-established methods (FreeSurfer,
SPM CONN). As discussed in detail below, the reproducibility was (a)
globally very high for T1-volumetric analysis; (b) high for DTI analy-
sis, but regionally more variable than for T1-volumetric analysis; and
(c) globally low for rsfMRI. To shed light on the reproducibility of
postprocessing and quantification tools for MRl is essential, particu-
larly when, by their nature (automated, user-friendly), these tools are

used for processing data on a large scale.

5.1 | Reproducibility of volumetric quantification

The 12C2 and the regional ICCs were high for the volumetric analy-
sis (vast majority > 0.9, while perfect agreement is 1), reflecting

the high stability of the volumetric data and suggesting that subtle
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FIGURE 6 Top: 3D PCA plot created with the Kirby21 regional measures of fractional anisotropy (FA) and mean diffusivity (MD).
Individuals were color-coded; that is, the same color represents a “test-retest” pair. Bottom: matrix of ranked distance between individuals
in the three-dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test-retest pair scored 1 (dark
blue). Test-retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than to him/herself in the second

scan) are framed in red

differences appointed by them are reliable (Wonderlick et al., 2009).
Although we observed a tendency of small areas to have lower ICCs
than large areas, the small variation of ICCs prevented the determi-
nation of a significant relationship between the ROI volume and the
respective reproducibility of its volume measures. We found repro-

ducibility similar to that in previous studies for data processed with

FreeSurfer (Morey et al., 2010; Wonderlick et al., 2009) using differ-
ent scanners, inclusion criteria, scan-rescan intervals, and software
versions, indicating that the stability of T1-based volumetric analysis
overcomes all these factors.

Both MRICloud and FreeSurfer had extremely high ICCs for
volumetric analysis (0.98 vs. 0.92), which indicates very high
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FIGURE 7 Color-coded regional mean ICCs for the resting-state fMRI outputs of MRICloud (MC) and CONN-SPM, in two independent
datasets (Kirby21 and HCP), overlaid on a representative brain, overlaid on a representative brain

reproducibility, suggesting both methods perform adequately in
anatomically normal data. Nevertheless, understanding the source
of ICCs variability can lead to improvements in data postprocess-
ing by identifying factors (such as the parcellation scheme, mapping
algorithm or set of atlases) that may impact reproducibility. For in-
stance, MRICloud uses diffeomorphic mapping (LDDMM) and mul-
tiple atlases, with a large range of anatomical variability. This makes
the method effective on both normal brains and brains with a large
range of nonlocalized deformations (“atrophy-like”), while methods
that assume a stable, healthy pattern may perform worse on these
scenarios {Oishi, 2009 #1831}. This is illustrated in Figure 9, where
MRICloud outputted a qualitatively reasonable segmentation for an
individual with marked brain atrophy, due to hereditary spastic para-
plegia type 11.

5.2 | Reproducibility of DTI results

The 12C2s for DTI-derived data, processed with MRICloud, were
high, while lower than those from the volumetric analysis. Although
most of the previous studies looked at DTI reliability on different
scans and/or from multiple centers (Deprez et al., 2018; Fox et al.,
2012; Jovicich et al., 2014), a few previous studies that addressed
test-retest reproducibility (Huang et al.,, 2012; Shou et al., 2013;
Zhang et al., 2019) found results comparable to ours. DTI-derived
metrics are calculated from multiple images and, thus, are inherently
more noisy and affected by coregistration errors and other types of
stability-related issues (Morey et al., 2010). In addition, DTl is highly
prone to voxel-level motion of the subject, which would lead to vari-
ous types of intensity-modulating artifacts (Alexander, Lee, Wu, &
Field, 2006; Ni, Kavcic, Zhu, Ekholm, & Zhong, 2006). Finally, a long

retest interval may introduce technical and biological effects in the
test retest analysis, which may partially explain the slightly lower
DTI reproducibility we found for HCP, compared to Kirby21.

Regionally, we found more variation in the DTI ICCs than in the
volumetric ICCs. Again, small parcels, which are more susceptible to
noise and partial volume effects (Deprez et al., 2018; Vollmar et al.,
2010), and parcels in the extremes of the sample (e.g., brainstem,
extreme frontal and occipital areas), where the mapping is more
challenging, tended to have lower ICCs. In addition, labels with a
clearly predominant direction of fibers (high FA) tended to have high
ICC, which was corroborated by the observed higher reducibility for
an anisotropic phantom compared to human subjects (Morey et al.,
2010). This has to be taken in account when planning or interpret-
ing the results of clinical studies. Since DTI measures experience
large variability, their sensitivity to detect biological effects may be
low. For instance, our power analysis revealed that, while the scan
session has a very small effect size in the volumetric analysis (and
thousands of subjects would be needed to detect volumetric dif-
ferences), the effect size of different sessions is much higher for FA,
and less than hundred subjects would be needed to detect a signif-
icant difference between scan sessions for the same individuals, in
areas of low ICC. Therefore, group differences in DTl metrics must
be carefully evaluated depending on effect size, location, and related
technical conditions.

Despite the lower reproducibility of DTl compared to T1 volu-
metric data analysis, the regional ICCs were, in general, high, and the
measurement variance was still lower than that of the population
variance (the distance between rest-retest pairs was lower than the
distance among difference subjects, as demonstrated in Figure 6),

revealing that MRICloud is a reasonably stable tool.
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FIGURE 8 Top: 3D PCA plot created with z-transformed correlations between the Kirby21 fMRI time courses of a pair of seeds,
outputted by MRICloud (MC) and SPM CONN. Individuals were color-coded, that is, the same color represents a “test-retest” pair. Bottom:
matrix of ranked distance between individuals in the three-dimensional PCA plot. If the variance in the measurement between scan sections
was minimal, a test-retest pair scored 1 (dark blue). Test-retest pairs that scored higher than 1 (i.e., the individual was closer to someone else

rather than to him/herself in the second scan) are framed in red

5.3 | Reproducibility of rsfMRI results

The 12C2s for rsfMRI data, processed with MRICloud, were lower
than those for volumetric and DTI data; the averaged ICCs for the
regional correlations among seeds fluctuated around 0.4. Although

there are a few reports of higher ICCs, the majority of previous

studies that addressed the reproducibility of rsfMRI across individu-
als are in agreement with our findings (Andellini, Cannata, Gazzellini,
Bernardi, & Napolitano, 2015; Deprez et al., 2018; Huang et al,,
2012; Shou et al., 2013). As for the DTI data, but on larger scale, the
(well-known) rsfMRI low reproducibility is attributed not only to the
postprocessing (which is extremely variable in methodology), but
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TABLE 4 Power analysis illustrated for
regions with high and low ICCs in the T1-
volumetric analysis and DTI quantification
performed with MRICloud

High ICC area

Low ICC area

T1-based volumes

Precentral (ICC = 0.99)
d=0.04/n= 20,260

Globus pallidus
(ICC =0.92)
d=0.06/n= 8,072

Fractional anisotropy (FA) - DTI

Projection fibers at pons level (ICC = 0.89)
d=0.1/n=3,234

Inferior cerebellar peduncle (ICC = 0.43)
d=0.69/n=70

Abbreviations: DTI, diffusion tensor images; ICC, intraclass correlation coefficients.

MRICloud

FreeSurfer

FIGURE 9 Segmentation of cortex and white matter outputted
from MRICloud (left) and FreeSurfer (right) of a brain with large
degree of atrophy

also to the actual nature of the sequence (Birn et al., 2013; Noble et
al., 2017; Patriat et al., 2013). For instance, here we found reproduc-
ibility slightly superior for HCP data than for Kirby21. HCP has more
frames per run and higher resolution that Kirby21, which may have
contributed to the observed difference. Multiple technical factors
(magnetic fields, sequence artifacts, motion) and biological condi-
tions (physical and mental states, even in healthy individuals) con-
tribute to data variability, some with a biologically relevant effect,
and others as just noise (Airan et al., 2016; Kelly, Biswal, Craddock,
Castellanos, & Milham, 2012). To isolate and quantify the contribu-
tion of each of these factors is one of the biggest challenges in the
field and is not within the scope of this study.

We found that the reproducibility of the outputs of MRICloud is
comparable, and slightly higher, to that obtained using SPM CONN. As
the parcellation scheme applied in both methods is the same, as well
as most of the postprocessing steps (slice-time correction, coregistra-
tion, motion correction, outlier rejection, nuisance correction, etc.),
the differences in the reproducibility are likely attributable to meth-
odological differences in the image mapping. Likewise in the T1-volu-

metric analysis, while this seems to have low influence in anatomical

normal data, the differences in mapping may affect anatomically ab-
normal data differently and the indices of reliability may present a
great variation, both absolutely and comparatively, among methods.

6 | CONCLUSION

We tested-retested the reproducibility of MRICloud, a free, auto-
mated method for multimodal MRI segmentation and quantification,
on two public, independent datasets. The reproducibility was ex-
tremely high for T1-volumetric analysis, high for DTI (however, re-
gionally variable), and low for resting-state fMRI. The reproducibility
for T1-volumetric analysis and rsfMRI slightly over performed that of
widely used software. The knowledge about the global reproducibil-
ity of each modality pipeline, as well as the regional reproducibility
for each label, is essential for both study planning and data interpre-
tation and is in line with the efforts to increase reproducibility and
transparence in science.
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