388 research outputs found

    Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study

    Get PDF
    Objective: Measurement of central-to-toe temperature difference has been advocated as an index of severity of shock and as a guide for circulatory therapy in critically ill patients. However, septic shock, in contrast to other forms of shock, is associated with a distributive malfunction resulting in a disparity between vascular compartments. Although this disparity has been established between systemic and microcirculatory parameters, it is unclear whether such disparity exists between skin perfusion and microcirculation. To test this hypothesis of disparity, we simultaneously measured parameters of the two vascular compartments, in the early phase of sepsis. Design: Prospective observational study in patients with severe sepsis/septic shock in the first 6 h of ICU admission. Simultaneous measurements of central-to-toe temperature difference and sublingual microcirculatory orthogonal polarization spectral imaging, together with parameters of systemic hemodynamics. Setting: 22 bed mixed-ICU in a tertiary teaching hospital. Patients: 35 consecutive patients in a 12-month period. Measurements and results: In 35 septic patients and a median APACHE II score of 20, no correlation between central-to-toe temperature gradient and microvascular flow index was observed (r(s) =-0.08, p = 0.65). Also no significant correlation between temperature gradient/microvascular flow index and systemic hemodynamic parameters could be demonstrated. Conclusions: During the early phase of resuscitated severe sepsis and septic shock there appears to be no correlation between sublingual microcirculatory alterations and the central-to-toe temperature difference. This finding adds to the concept of a dispersive nature of blood flow under conditions of sepsis between microcirculatory and systemic hemodynamic

    Zeta Inhibitory Peptide attenuates learning and memory by inducing NO-mediated downregulation of AMPA receptors

    Get PDF
    Zeta inhibitory peptide (ZIP), a PKMζ inhibitor, is widely used to interfere with the main- tenance of acquired memories. ZIP is able to erase memory even in the absence of PKMζ, via an unknown mechanism. We found that ZIP induces redistribution of the AMPARGluA1 in HEK293 cells and primary cortical neurons, and decreases AMPAR-mediated currents in the nucleus accumbens (NAc). These effects were mimicked by free arginine or by a modified ZIP in which all but the arginine residues were replaced by alanine. Redistribution was blocked by a peptidase-resistant version of ZIP and by treatment with the nitric oxide (NO)- synthase inhibitor L-NAME. ZIP increased GluA1-S831 phosphorylation and ZIP-induced redistribution was blocked by nitrosyl-mutant GluA1-C875S or serine-mutant GluA1-S831A. Introducing the cleavable arginine-alanine peptide into the NAc attenuated expression of cocaine-conditioned reward. Together, these results suggest that ZIP may act as an arginine donor, facilitating NO-dependent downregulation of AMPARs, thereby attenuating learning and memory

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Seasonal variation of water uptake of a Quercus suber tree in Central Portugal

    Get PDF
    Hydraulic redistribution (HR) is the phenomenon where plant roots transfer water between soil horizons of different water potential. When dry soil is a stronger sink for water loss from the plant than transpiration, water absorbed by roots in wetter soil horizons is transferred toward, and exuded into dry soil via flow reversals through the roots. Reverse flow is a good marker of HR and can serve as a useful tool to study it over the long-term. Seasonal variation of water uptake of a Quercus suber tree was studied from late winter through autumn 2003 at Rio Frio near Lisbon, Portugal. Sap flow was measured in five small shallow roots (diameter of 3–4 cm), 1 to 2 m from the tree trunk and in four azimuths and at different xylem depths at the trunk base, using the heat field deformation method (HFD). The pattern of sap flow differed among lateral roots as soil dried with constant positive flow in three roots and reverse flow in two other roots during the night when transpiration ceased. Rain modified the pattern of flow in these two roots by eliminating reverse flow and substantially increasing water uptake for transpiration during the day. The increase in water uptake in three other roots following rain was not so substantial. In addition, the flux in individual roots was correlated to different degrees with the flux at different radial depths and azimuthal directions in trunk xylem. The flow in outer trunk xylem seemed to be mostly consistent with water movement from surface soil horizons, whereas deep roots seemed to supply water to the whole cross-section of sapwood. When water flow substantially decreased in shallow lateral roots and the outer stem xylem during drought, water flow in the inner sapwood was maintained, presumably due to its direct connection to deep roots. Results also suggest the importance of the sap flow sensor placement, in relation to sinker roots, as to whether lateral roots might be found to exhibit reverse flow during drought. This study is consistent with the dimorphic rooting habit of Quercus suber trees in which deep roots access groundwater to supply superficial roots and the whole tree, when shallow soil layers were dry

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Cerebral Changes Occurring in Arginase and Dimethylarginine Dimethylaminohydrolase (DDAH) in a Rat Model of Sleeping Sickness

    Get PDF
    Involvement of nitric oxide (NO) in the pathophysiology of human African trypanosomiasis (HAT) was analyzed in a HAT animal model (rat infected with Trypanosoma brucei brucei). With this model, it was previously reported that trypanosomes were capable of limiting trypanocidal properties carried by NO by decreasing its blood concentration. It was also observed that brain NO concentration, contrary to blood, increases throughout the infection process. The present approach analyses the brain impairments occurring in the regulations exerted by arginase and N(G), N(G)-dimethylarginine dimethylaminohydrolase (DDAH) on NO Synthases (NOS). In this respect: (i) cerebral enzymatic activities, mRNA and protein expression of arginase and DDAH were determined; (ii) immunohistochemical distribution and morphometric parameters of cells expressing DDAH-1 and DDAH-2 isoforms were examined within the diencephalon; (iii) amino acid profiles relating to NOS/arginase/DDAH pathways were established.Arginase and DDAH activities together with mRNA (RT-PCR) and protein (western-blot) expressions were determined in diencephalic brain structures of healthy or infected rats at various days post-infection (D5, D10, D16, D22). While arginase activity remained constant, that of DDAH increased at D10 (+65%) and D16 (+51%) in agreement with western-blot and amino acids data (liquid chromatography tandem-mass spectrometry). Only DDAH-2 isoform appeared to be up-regulated at the transcriptional level throughout the infection process. Immunohistochemical staining further revealed that DDAH-1 and DDAH-2 are contained within interneurons and neurons, respectively.In the brain of infected animals, the lack of change observed in arginase activity indicates that polyamine production is not enhanced. Increases in DDAH-2 isoform may contribute to the overproduction of NO. These changes are at variance with those reported in the periphery. As a whole, the above processes may ensure additive protection against trypanosome entry into the brain, i.e., maintenance of NO trypanocidal pressure and limitation of polyamine production, necessary for trypanosome growth

    Allyl Isothiocyanate that Induces GST and UGT Expression Confers Oxidative Stress Resistance on C. elegans, as Demonstrated by Nematode Biosensor

    Get PDF
    Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC.We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits

    A Genome-Wide SNP Scan Reveals Novel Loci for Egg Production and Quality Traits in White Leghorn and Brown-Egg Dwarf Layers

    Get PDF
    Availability of the complete genome sequence as well as high-density SNP genotyping platforms allows genome-wide association studies (GWAS) in chickens. A high-density SNP array containing 57,636 markers was employed herein to identify associated variants underlying egg production and quality traits within two lines of chickens, i.e., White Leghorn and brown-egg dwarf layers. For each individual, age at first egg (AFE), first egg weight (FEW), and number of eggs (EN) from 21 to 56 weeks of age were recorded, and egg quality traits including egg weight (EW), eggshell weight (ESW), yolk weight (YW), eggshell thickness (EST), eggshell strength (ESS), albumen height(AH) and Haugh unit(HU) were measured at 40 and 60 weeks of age. A total of 385 White Leghorn females and 361 brown-egg dwarf dams were selected to be genotyped. The genome-wide scan revealed 8 SNPs showing genome-wise significant (P<1.51E-06, Bonferroni correction) association with egg production and quality traits under the Fisher's combined probability method. Some significant SNPs are located in known genes including GRB14 and GALNT1 that can impact development and function of ovary, but more are located in genes with unclear functions in layers, and need to be studied further. Many chromosome-wise significant SNPs were also detected in this study and some of them are located in previously reported QTL regions. Most of loci detected in this study are novel and the follow-up replication studies may be needed to further confirm the functional significance for these newly identified SNPs

    Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: rethinking cancer immunotherapy

    Get PDF
    Review article[Abstract] The immune system regulates angiogenesis in cancer by way of both pro- and antiangiogenic activities. A bidirectional link between angiogenesis and the immune system has been clearly demonstrated. Most antiangiogenic molecules do not inhibit only VEGF signaling pathways but also other pathways which may affect immune system. Understanding of the role of these pathways in the regulation of immunosuppressive mechanisms by way of specific inhibitors is growing. Renal cell carcinoma (RCC) is an immunogenic tumor in which angiogenesis and immunosuppression work hand in hand, and its growth is associated with impaired antitumor immunity. Given the antitumor activity of selected TKIs in metastatic RCC (mRCC), it seems relevant to assess their effect on the immune system. The confirmation that TKIs improve cell cytokine response in mRCC provides a basis for the rational combination and sequential treatment of TKIs and immunotherapy

    Farmers’ perceptions of climate change : identifying types

    Get PDF
    Ambitious targets to reduce greenhouse gas (GHG) emissions from agriculture have been set by both national governments and their respective livestock sectors. We hypothesize that farmer self-identity influences their assessment of climate change and their willingness to im- plement measures which address the issue. Perceptions of climate change were determined from 286 beef/sheep farmers and evaluated using principal component analysis (PCA). The analysis elicits two components which evaluate identity (productivism and environmental responsibility), and two components which evaluate behavioral capacity to adopt mitigation and adaptation measures (awareness and risk perception). Subsequent Cluster Analyses reveal four farmer types based on the PCA scores. ‘The Productivist’ and ‘The Countryside Steward’ portray low levels of awareness of climate change, but differ in their motivation to adopt pro-environmental behavior. Conversely, both ‘The Environmentalist’ and ‘The Dejected’ score higher in their awareness of the issue. In addition, ‘The Dejected’ holds a high sense of perceived risk; however, their awareness is not conflated with an explicit understanding of agricultural GHG sources. With the exception of ‘The Environmentalist’, there is an evident disconnect between perceptions of agricultural emission sources and their contribution towards GHG emissions amongst all types. If such linkages are not con- ceptualized, it is unlikely that behavioral capacities will be realized. Effective communication channels which encour- age action should target farmers based on the groupings depicted. Therefore, understanding farmer types through the constructs used in this study can facilitate effective and tai- lored policy development and implementation
    corecore