141 research outputs found

    Diffusion Quantum Monte Carlo Calculations of Excited States of Silicon

    Full text link
    The band structure of silicon is calculated at the Gamma, X, and L wave vectors using diffusion quantum Monte Carlo methods. Excited states are formed by promoting an electron from the valence band into the conduction band. We obtain good agreement with experiment for states around the gap region and demonstrate that the method works equally well for direct and indirect excitations, and that one can calculate many excited states at each wave vector. This work establishes the fixed-node DMC approach as an accurate method for calculating the energies of low lying excitations in solids.Comment: 5 pages, 1 figur

    Finite size errors in quantum many-body simulations of extended systems

    Full text link
    Further developments are introduced in the theory of finite size errors in quantum many-body simulations of extended systems using periodic boundary conditions. We show that our recently introduced Model Periodic Coulomb interaction [A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997)] can be applied consistently to all Coulomb interactions in the system. The Model Periodic Coulomb interaction greatly reduces the finite size errors in quantum many-body simulations. We illustrate the practical application of our techniques with Hartree-Fock and variational and diffusion quantum Monte Carlo calculations for ground and excited state calculations. We demonstrate that the finite size effects in electron promotion and electron addition/subtraction excitation energy calculations are very similar.Comment: 15 pages, 6 figures. To appear in Phys. Rev.

    JWST's Cryogenic Position Metrology System

    Get PDF
    The James Webb Space Telescope will undergo a full system test in the cryogenic vacuum chamber A at the Johnson Spaceflight Center in order to verify the overall performance of the combined telescope and instrument suite. This will be the largest and most extensive cryogenic test ever undertaken. Early in the test system development, it was determined that precise position measurements of the overall hardware would enhance the test results. Various concepts were considered before selecting photogrammetry for this metrology. Photogrammetry has been used in space systems for decades, however cryogenic use combined with the size and the optical/thermal sensitivity of JWST creates a unique set of implementation challenges. This paper provides an overview of the JWST photogrammetric system and mitigation strategies for three key engineering design challenges: 1) the thermal design of the viewing windows to prevent excessive heat leak and stray light to the test article 2) cost effective motors and mechanisms to provide the angle diversity required, and 3) camera-flash life and reliability sufficient for inaccessible use during the number and duration of the cryogenic tests

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten

    Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon

    Full text link
    Quantum Monte Carlo (QMC) techniques are used to calculate the one-body density matrix and excitation energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from a Slater-Jastrow wave function with a determinant of local density approximation (LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant difference to the quality of the wave function's nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended Koopmans' Theorem for correlated wave functions is used to calculate excitation energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole and quasielectron states. We have found that this approximation has an advantageous scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.

    Cultural theory and the dynamics of organizational change: the response of housing associations in London to the Housing Act 1988

    Get PDF
    The aim of this article is to consider the most effective way of conceptualizing a sector that has undergone radical change: the UK voluntary housing sector. The article considers existing accounts of housing associations and classifies these into five analytically distinct groups: practitioners, historical accounts, managerialist approaches, network theorists and institutionalist accounts. The main contention is that each of these is limited in explanatory potential, primarily due to their neglect of culture. This article proposes a more detailed framework for developing an understanding of the substantial changes affecting housing associations since the 1980s; that offered by "grid-group cultural theory". The article provides longitudinal qualitative data obtained from London housing associations to support the contention that organizational change can most usefully be understood by reference to the cultural themes of hierarchy and individualism. The article contends that cultural theory offers the opportunity to develop a systematic analysis that accounts for institutional history and organizational differentiation

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Immunology and genetics of type 1 diabetes

    Full text link
    Type 1 diabetes is one of the most well-characterized autoimmune diseases. Type 1 diabetes compromises an individual's insulin production through the autoimmune destruction of pancreatic Β-cells. Although much is understood about the mechanisms of this disease, multiple potential contributing factors are thought to play distinct parts in triggering type 1 diabetes. The immunological diagnosis of type 1 diabetes relies primarily on the detection of autoantibodies against islet antigens in the serum of type 1 diabetes mellitus patients. Genetic analyses of type 1 diabetes have linked human leukocyte antigen, specifically class II alleles, to susceptibility to disease onset. Environmental catalysts include various possible factors, such as viral infections, although the evidence linking infections with type 1 diabetes remains inconclusive. Imbalances within the immune system's system of checks and balances may promote immune activation, while undermining immune regulation. A lack of proper regulation and overactive pathogenic responses provide a framework for the development of autoimmune abnormalities. Type 1 diabetes is a predictable and potentially treatable disease that still requires much research to fully understand and pinpoint the exact triggering events leading to autoimmune activation. In silico research can aid the comprehension of the etiology of complex disease pathways, including Type I diabetes, in order to and help predict the outcome of therapeutic strategies aimed at preserving Β-cell function. Mt Sinai J Med 75:314–327, 2008. © 2008 Mount Sinai School of MedicinePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60987/1/20052_ftp.pd

    Food security outcomes in agricultural systems models: Current status and recommended improvements

    Get PDF
    Improvement of food security is a common objective for many agricultural systems analyses, but how food security has been conceptualized and evaluated within agricultural systems has not been systematically evaluated. We reviewed the literature on agricultural systems analyses of food security at the household- and regionallevels, finding that the primary focus is on only one dimension of food security-agricultural output as a proxy for food availability. Given that food security comprises availability, access, utilization and stability dimensions, improved practice would involve more effort to incorporate food access and stability indicators into agricultural systems models. The empirical evidence base for including food access indicators and their determinants within agricultural systems models requires further development through appropriate short and longterm investments in data collection and analysis. Assessment of the stability dimension of food security (through time) is also particularly under-represented in previous work and requires the development and application of appropriate dynamic models of agricultural systems that include food security indicators, coupled with more formalized treatment of robustness and adaptability at both the regional and household levels. We find that agricultural systems models often conflate analysis of food security covariates that have the potential to improve food security (like agricultural yields) with an assessment of food security itself. Agricultural systems modelers should exercise greater caution in referring to analyses of agricultural output and food availability as representing food security more generally

    Avant-garde and experimental music

    No full text
    • …
    corecore